» »

Определение теплопроводности твердых материалов методом плоского слоя. Особенности определения теплопроводности строительных материалов Относительный метод определения теплопроводности

22.06.2020

До настоящего времени не выработано единой классификации, что связано с многообразием существующих методов. Всем известные экспериментальные методы измерения коэффициента теплопроводности материалов разделяются на две большие группы: стационарные и нестационарные. В первом случае качество расчетной формулы используются частные решения уравнения теплопроводности

при условии, во втором - при условии, где T - температура; ф - время; - коэффициент температуропроводности; л - коэффициент теплопроводности; С - удельная теплоемкость; г - плотность материала; - оператор Лапласа, записанный в соответствующей системе координат; - удельная мощность объемного источника тепла.

Первая группа методов основана на использовании стационарного теплового режима; вторая - нестационарного теплового режима. Стационарные методы определения коэффициента теплопроводности по характеру измерений являются прямыми (т.е. непосредственно определяется коэффициент теплопроводности) и делятся на абсолютные и относительные. В абсолютных методах измеряемые в эксперименте параметры позволяют с помощью расчетной формулы получить искомую величину коэффициента теплопроводности. В относительных методах измеряемые в эксперименте параметры позволяют с помощью расчетной формулы получить искомую величину коэффициента теплопроводности. В относительных методах измеряемых параметров для расчета абсолютной величины оказывается недостаточно. Здесь возможны два случая. Первый - наблюдение за изменением коэффициента теплопроводности по отношению к исходному, принятому за единицу. Второй случай - применение эталонного материала с известными тепловыми свойствами. При этом в расчетной формуле используется коэффициент теплопроводности эталона. Относительные методы имеют некоторое преимущество перед абсолютными методами, так как более просты. Дальнейшее деление стационарных методов можно провести по характеру нагрева (внешний, объемный и комбинированный) и по виду изотерм поля температуры в образцах (плоские, цилиндрические, сферические). Подгруппа методов с внешним нагревом включает все методы, в которых используются наружные (электрические, объемные и др.) нагреватели и нагрев поверхностей образца тепловым излучением или электронной бомбардировкой. Подгруппа методов с объемным нагревом объединяет все методы, где используется нагрев током, пропускаемым через образец, нагрев исследуемого образца от нейтронного или г-излучения или токами сверхвысокой частоты. К подгруппе методов с комбинированным нагревом могут быть отнесены методы, в которых одновременно используется внешний и объемный нагрев образцов, или промежуточный нагрев (например, токами высокой частоты).

Во всех трех подгруппах стационарных методов поле температуры

может быть различным.

Плоские изотермы образуются в случае, когда тепловой поток направлен вдоль оси симметрии образца. Методы с использованием плоских изотерм в литературе называются методами с осевым или продольным потоком тепла, а сами экспериментальные установки - плоскими приборами.

Цилиндрические изотермы соответствуют распространению теплового потока по направлению радиуса цилиндрического образца. В случае, когда тепловой поток направлен по радиусу сферического образца, возникают сферические изотермы. Методы, использующие такие изотермы, называются сферическими, а приборы - шаровыми.

2

1 Государственное бюджетное образовательное учреждение высшего профессионального образования Московской области «Международный университет природы, общества и человека «Дубна» (Университет «Дубна»)

2 ЗАО «Межрегиональное производственное объединение технического комплектования «ТЕХНОКОМПЛЕКТ»(ЗАО «МПОТК «ТЕХНОКОМПЛЕКТ»)

Разработан метод измерения теплопроводности поликристаллических алмазных пластин. Метод включает в себя нанесение с противоположных сторон пластины двух тонкоплёночных термометров сопротивления, выполненных по мостовой схеме. С одной стороны в месте расположения одного из термометров сопротивления пластина нагревается с помощью контакта с горячим медным стержнем. С противоположной стороны (в месте расположения другого термометра сопротивления) производится охлаждение пластины с помощью контакта с медным стержнем, охлаждаемым водой. Тепловой поток, протекающий через пластину, измеряется с помощью термопар, установленных на горячем медном стержне, и регулируется автоматическим устройством. Тонкоплёночные термометры сопротивления, нанесённые методом вакуумной депозиции, имеют толщину 50 нанометров и составляют практически одно целое с поверхностью пластины. Поэтому измеряемые температуры точно соответствуют температурам на противоположных поверхностях пластины. Высокая чувствительность тонкоплёночных термометров сопротивления обеспечивается благодаря повышенному сопротивлению их резисторов, что позволяет использовать напряжение питания моста не менее 20 В.

теплопроводность

поликристаллические алмазные пластины

тонкоплёночный мостовой датчик температуры

1. Битюков В.К., Петров В.А., Терешин В.В. Методология определения коэффициента теплопроводности полупрозрачных материалов // Международная теплофизическая школа, Тамбов, 2004. – C. 3-9.

2. Духновский М.П., Ратникова А.К. Способ определения теплофизических характеристик материала и устройство для его осуществления//Патент РФ № 2319950 МПК G01N25/00 (2006).

3. Колпаков А., Карташев Е. Контроль тепловых режимов силовых модулей. //Компоненты и технологии. – 2010. – №4. – С. 83-86.

4. Определение теплопроводности алмазных поликристаллических плёнок с помощью фотоакустического эффекта // ЖТФ, 1999. – Т. 69. – Вып. 4. – С. 97-101.

5. Установка для измерения теплопроводности порошковых материалов // Тезисы докладов, представленных на Третью международную конференцию и Третью международную Школу молодых ученых и специалистов «Взаимодействие изотопов водорода с конструкционными материалами» (IНISM-07). – Саров, 2007. – С. 311-312.

6. Царькова О.Г. Оптические и теплофизические свойства металлов, керамик и алмазных плёнок при высокотемпературном лазерном нагреве // Труды Института общей физики им. А.М.Прохорова, 2004. – Т. 60. – C. 30-82.

7. Minituarized thin film temperature sensor for wide range of measurement // Proc. of 2nd IEEE International workshop on advances in sensors and interfaces, IWASI. – 2007. – P.120-124.

Современные компоненты электроники, в особенности силовой электроники, выделяют значительное количество тепла. Для обеспечения надёжной работы этих компонентов в настоящее время создаются устройства теплотвода, в которых используются пластины из синтетических алмазов, обладающие сверхвысокой теплопроводностью. Точное измерение коэффициента теплопроводности этих материалов имеет большое значение для создания современных устройств силовой электроники.

Для измерения с приемлемой точностью величины теплопроводности в основном направлении теплоотвода (перпендикулярно толщине пластины)необходимо создать на поверхности образца тепловой поток с поверхностной плотностью не менее 20 ,вследствие очень большой теплопроводности поликристаллических алмазных пластин-теплоотводов. Описанные в литературе методы, с использованием лазерных установок (см. ), обеспечивают недостаточную поверхностную плотность теплового потока 3,2 и,кроме того, вызывают нежелательный разогрев измеряемого образца. Методы измерения теплопроводности, использующие импульсный нагрев образца сфокусированным лучом , и методы, использующие фотоакустический эффект , не являются прямыми методами, и поэтому не могут обеспечить требуемый уровень достоверности и точности измерений, а также требуют сложной аппаратуры и громоздких вычислений. Метод измерений, описанный в работе ,в основу которого положен принцип плоских тепловых волн, пригоден только для материалов со сравнительно невысокой теплопроводностью. Метод стационарной теплопроводности , может быть применён только для измерения теплопроводности в направлении вдоль пластины, а это направление не является основным направлением теплоотвода и не представляет научного интереса.

Описание выбранного метода измерений

Необходимую поверхностную плотность стационарного теплового потока можно обеспечить с помощью контакта горячего медного стержня с одной стороны алмазной пластины и контакта с холодным медным стержнем с противоположной стороны алмазной пластины. Измеряемый перепад температур может быть при этом небольшим, например, всего лишь 2 °С. Поэтому необходимо достаточно точно измерять температуру с обеих сторон пластины в местах контакта. Это можно сделать с помощью миниатюрных тонкоплёночных термометров сопротивления, которые могут быть изготовлены методом вакуумной депозиции мостовой измерительной схемы термометра на поверхность пластины. В работе описан наш предыдущий опыт в конструировании и изготовлении миниатюрных тонкоплёночных термометров сопротивления высокой точности, который подтверждает возможность и полезность применения этой технологии в рассматриваемом нами случае. Тонкоплёночные термометры имеют очень малую толщину 50?80 нм, и поэтому их температура не отличается от температуры поверхности пластины, на которую они нанесены. Горячий медный стержень нагревается с помощью электроизолированной нихромовой проволоки, обмотанной вокруг этого стержня на значительной длине, чтобы обеспечить подвод необходимой тепловой мощности. Теплопроводность медного стержня обеспечивает передачу в осевом направлении стержня теплового потока с плотностью не менее 20 . Измерение величины этого теплового потока производится с помощью двух тонких хромель-алюмелевых термопар, расположенных на заданном расстоянии друг от друга в двух сечениях по оси стержня. Отвод потока тепла, проходящего через пластину, осуществляется с помощью медного стержня охлаждаемого водой. Для снижения тепловых сопротивлений в местах контакта медных стержней с пластиной применяется силиконовая смазка типа DowCorningTC-5022. Тепловые контактные сопротивления не влияют на величину измеряемого теплового потока, они вызывают незначительное повышение температуры пластины и нагревателя. Таким образом, теплопроводность пластины в основном направлении теплоотвода определяется прямыми измерениями величины теплового потока, походящего через пластину и величины перепада температур на её поверхностях. Для этих измерений может быть использован образец пластины с размерами приблизительно 8х8мм.

Следует отметить, что тонкоплёночные термометры сопротивления могут быть использованы в дальнейшем для мониторинга функционирования изделий силовой электроники, содержащих теплоотводные алмазные пластины. В литературе также подчеркивается важность встроенного контроля теплового состояния силовых модулей.

Описание конструкции стенда, его основных элементов и приборов

Тонкоплёночные мостовые датчики температуры

Для высокоточного измерения температуры на поверхность пластины из поликристаллического искусственного алмаза методом магнетронного напыления наносится мостовая схема термометра сопротивления. В этой схеме два резистора изготавливаются из платины или из титана, а два других изготавливаются из нихрома. При комнатной температуре сопротивления всех четырёх резисторов одинаковы и равны . Рассмотрим случай, когда два резистора изготавливаются из платины.При изменении температуры на сопротивление резисторов возрастает:

Суммы сопротивлений: . Сопротивление моста равно . Величина сигнала на измерительной диагонали моста равна: U m = I 1 R 0 (1+ 3,93.10 -3 Δ T )- I 4 R 0 (1+0,4.10 -3 Δ T ) .

При малом изменении температуры на несколько градусов можно принять допущение, что суммарное сопротивление моста равно R0,ток через плечо моста равен 0,5.U0/R0, где U0-напряжение питания моста. При этих допущениях получим величину измерительного сигнала равную:

U m = 0,5. U 0 . 3,53.10 -3 Δ T = 1,765.10 -3 .U 0 Δ T .

Допустим, что величина Δ T = 2? C , тогда при напряжении питания 20 В мы получим величину измерительного сигнала равной U m =70 мВ.Принимая по внимание то, что погрешность измерительных приборов будет не более 70 мкВ, мы получим, что теплопроводность пластины может быть измерена с погрешностью не хуже 0,1%.

Для тензо- и терморезисторов обычно принимается величина рассеиваемой мощности не более 200 мВт. При напряжении питания 20 В это означает, что сопротивление моста должно быть не менее 2000 Ом. По технологическим причинам терморезистор состоит из n нитей шириной 30 мкм, расположенных на расстоянии 30 микрон друг от друга. Толщина нити резистора 50 нм. Длина нити резистора 1,5 мм. Тогда сопротивление одной нити из платины равно 106 Ом. 20 платиновых нитей составят резистор с сопротивлением 2120 Ом. Ширина резистора составит 1,2 мм. Сопротивление одной нити из нихрома равно 1060 Ом. Следовательно, резистор из нихрома будет иметь 2 нити и ширину 0,12 мм. В том случае, когда два резистора R 0 , R 3 изготавливаются из титана, чувствительность датчика понизится на 12%, однако, вместо 20 платиновых нитей резистор можно будет выполнить из 4-х титановых нитей.

На рисунке 1 представлена схема тонкоплёночного мостового датчика температуры.

Рис.1. Тонкопленочный мостовой датчик температуры

Образец пластины 1имеет размер 8х8 мм и толщину0,25 мм. Размеры соответствуют тому случаю, когда используются платиновые резисторы, а- резисторы из нихрома. Соединения 2 резисторов между собой (заштрихованы), контактные площадки 3,4,5,6 шин питания и измерения выполнены медно-никелевыми проводниками. Круг контакта с медными стержнями нагревателя 7, с одной стороны, и охладителя, с другой стороны имеет диаметр 5мм. Изображенная на рисунке 1 электрическая схема термометра сопротивления наносится с обеих сторон образца-пластины. Для электроизоляции поверхность каждого термометра сопротивления покрывается тонкой плёнкой двуокиси кремния или окиси кремния с помощью вакуумной депозиции.

Устройства нагрева и охлаждения

Для создания стационарного перепада температуры между двумя поверхностями алмазной пластины используются нагреватель и охладитель (рисунок 2).

Рис. 2. Схема стенда:

1 - корпус, 2 - корпус охлаждения, 3 - алмазная пластина, 4 - стержень нагревателя, 5 - нихромовая проволока, 6 - стакан, 7 - теплоизоляция, 8 - винт микрометрический, 9 - крышка корпуса, 10 - пружина тарельчатая, 11, 12 - термопары, 13 - стальной шарик,

14 - опорная пластина, 15 - винт.

Нагреватель состоит из электроизолированной нихромовой проволоки 5, которая намотана на медный стержень нагревателя 4. С внешней стороны нагреватель закрыт медной трубкой 6, окруженной теплоизоляцией 7. В нижней части медный стержень 4имеет диаметр 5мм и торец стержня 4контактирует с поверхностью алмазной пластины3. С противоположной стороны алмазная пластина контактирует с верхней цилиндрической частью медного корпуса 2, охлаждаемого водой (корпус охлаждения). 11,12-хромель-алюмелевые термопары.

Обозначим температуру, измеряемую термопарой 11,- температуру, измеряемую термопарой 12,- температуру на поверхности пластины 3 со стороны нагревателя,- температуру на поверхности пластины 3 со стороны охладителя и - температуру воды. В описанном устройстве имеют место теплообменные процессы, характеризующиеся следующими уравнениями:

(1)

( (2)

) (4)

где:- электрическая мощность нагревателя,

Коэффициент полезного действия нагревателя,

Теплопроводность меди,

l- длина контактного стержня,

d- диаметр контактного стержня,

Ожидаемая теплопроводность пластины 3,

t-толщина пластины,

Коэффициент отвода тепладля скорости воды ,

Площадь поверхности охлаждения,

Объемная теплоемкость воды,

D- диаметр водопроводной трубки в корпусе охлаждения,

Изменение температуры воды.

Допустим, что перепад температур на пластине равен 2°C. Тогда через пластину проходит тепловой поток 20. При диаметре медного стержня равном 5мм этому тепловому потоку соответствует мощность 392,4Вт. Принимая коэффициент полезного действия нагревателя равным 0,5, получим электрическую мощность нагревателя 684,8 Вт. Из уравнений (3,4) следует, что вода почти не изменяет свою температуру, а температура на поверхности алмазной пластины 3 будет равна Из уравнений (1,2) получим (при длине контактного медного стержня равной 2мм, и , что температура, измеряемая термопарой 11 равна = 248ºC.

Для нагрева медного стержня 4используется нихромовая проволока5,в изоляции. Концы проводов нагревателя выходят через проточку в детали 4.Провода нагревателя через более толстые медные провода подсоединяются к симисторному усилителю электрической мощности PR1500, который управляется регулятором ТРМ148. Программа регулятора задается по величине температуры , измеряемой термопарой 11, которая используется в качестве обратной связи для регулятора.

Устройство охлаждения образца состоит из медного корпуса 2, имеющего в верхней части контактный цилиндр диаметром 5мм. Корпус 2 охлаждается водой.

Нагревательное устройство устанавливается на тарельчатую пружину 10 и связано с головкой точного винта8 при помощи шарика 13,который расположен в углублении детали 4.Пружина 10 позволяет регулировать напряжения в контакте стержня 4 с образцом 3. Это достигается вращением верхней головки точного винта 8 с помощью ключа. Определённому перемещению винта соответствует известное усилие пружины 10. Производя начальную градуировку усилий пружины без образца при контакте стержня 4 с корпусом 2, мы можем добиться хорошего механического контакта поверхностей при допустимых напряжениях. В случае необходимости точного измерения контактных напряжений конструкцию стенда можно доработать, соединив корпус 2 тарированными пластинчатыми пружинами с нижней частью корпуса стенда 1.

Термопары 11 и 12 устанавливаются, как показано на рисунке 2 в узкие пропилы в головке стержня 4. Термопарная проволока хромель и алюмель диаметром 50 мкм сваривается между собой и для электроизоляции покрывается эпоксидным клеем, затем устанавливается в свой пропил и закрепляется клеем. Возможно также зачеканить конец каждого вида термопарного провода вблизи друг друга без образования спая. На расстоянии 10 см к тонким термопарным проводам нужно подпаять более толстые (0,5 мм) одноименные провода, которые будут присодинены к регулятору и к мультиметру.

Заключение

С помощью метода и средств измерений, описанных в настоящей работе можно с высокой точностью производить измерения коэффициента теплопроводности пластин из синтетических алмазов.

Разработка метода измерения теплопроводности проводится в рамках работы «Разработка перспективных технологий и конструкций изделий интеллектуальной силовой электроники для применения в аппаратуре бытового и промышленного назначения, на транспорте, в топливно-энергетическом комплексе и в специальных системах (силовой модуль с поликристаллическим алмазным теплоотводом)» при финансовой поддержке Министерства образования и науки Российской Федерации в рамках государственного контракта № 14.429.12.0001 от 05 марта 2014 г.

Рецензенты:

Акишин П.Г., д.ф-м.н., старший научный сотрудник (доцент), заместитель начальника отдела, Лаборатория информационных технологий, Объединенный институт ядерных исследований (ОИЯИ), г. Дубна;

Иванов В.В., д.ф-м.н., старший научный сотрудник (доцент), главный научный сотрудник, Лаборатория информационных технологий, Объединенный институт ядерных исследований (ОИЯИ), г. Дубна.

Библиографическая ссылка

Миодушевский П.В., Бакмаев С.М., Тингаев Н.В. ТОЧНОЕ ИЗМЕРЕНИЕ СВЕРХВЫСОКОГО КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ МАТЕРИАЛА НА ТОНКИХ ПЛАСТИНАХ // Современные проблемы науки и образования. – 2014. – № 5.;
URL: http://science-education.ru/ru/article/view?id=15040 (дата обращения: 01.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Физические методы анализа основаны на использовании какого-либо специфического физического эффекта или определенного физического свойства вещества. Для газового анализа используют плотность, вязкость, теплопроводность, показатель преломления, магнитную восприимчивость, диффузию, абсорбцию, эмиссию, поглощение электромагнитного излучения, а также селективную абсорбцию, скорость звука, тепловой эффект реакции, электрическую проводимость и др. Некоторые из этих физических свойств и явлений делают возможным непрерывный газовый анализ и позволяют достичь высокой чувствительности и точности измерений. Выбор физической величины или явления очень важен для исключения влияния неизмеряемых компонентов, содержащихся в анализируемой смеси. Использование специфических свойств или эффектов позволяет определять концентрацию нужного компонента в многокомпонентной газовой смеси. Неспецифические физические свойства можно использовать, строго говоря, только для анализа бинарных газовых смесей. Вязкость, показатель преломления и диффузия при анализе газов практического значения не имеют.

Передача тепла между двумя точками с различной температурой происходит тремя путями: конвекцией, излучением и теплопроводностью. При конвекции передача тепла связана с переносом материи (массопередачей); передача тепла излучением происходит без участия материи. Передача тепла теплопроводностью происходит с участием материи, но без массопередачи. Передача энергии происходит вследствие соударения молекул. Коэффициент теплопроводности (X ) зависит только от вида вещества, передающего тепло. Он является специфической характеристикой вещества.

Размерность теплопроводности в системе СГС кал/(с см К), в технических единицах - ккалДмч-К), в международной системе СИ - ВтДм-К). Соотношение этих единиц следующее: 1 кал/(см с К) = 360 ккалДм ч К) = = 418,68 ВтДм-К).

Абсолютная теплопроводность при переходе от твердых к жидким и газообразным веществам изменяется от Х = 418,68 ВтДм-К)] (теплопроводности лучшего проводника тепла - серебра) до X порядка 10 _6 (теплопроводность наименее проводящих газов).

Теплопроводность газов сильно увеличивается с ростом температуры. Для некоторых газов (GH 4: NH 3) относительная теплопроводность с ростом температуры резко возрастает, а для некоторых (Ne) она снижается. По кинетической теории теплопроводность газов не должна зависеть от давления. Однако различные причины приводят к тому, что при увеличении давления теплопроводность немного увеличивается. В диапазоне давлений от атмосферного до нескольких миллибар теплопроводность не зависит от давления, так как средняя величина свободного пробега молекул увеличивается с уменьшением числа молекул в единице объема. При давлении -20 мбар длина свободного пробега молекул соответствует размеру измерительной камеры.

Измерение теплопроводности является старейшим физическим методом газового анализа. Он был описан в 1840 г., в частности, в работах А. Шлейермахера (1888-1889) и с 1928 г. применяется в промышленности. В 1913 г. фирмой Сименс был разработан измеритель концентрации водорода для дирижаблей. После этого в течение многих десятилетий приборы, основанные на измерении теплопроводности, с большим успехом разрабатывались и широко применялись в быстро растущей химической промышленности. Естественно, что сначала анализировали лишь бинарные газовые смеси. Лучшие результаты получают при большой разности теплопроводности газов. Среди газов самую большую теплопроводность имеет водород. На практике оправдалось также измерение концентрации CO s в дымовых газах, так как теплопроводности кислорода, азота и оксида углерода очень близки между собой, что позволяет смесь этих четырех компонентов рассматривать как квазибинарную .

Температурные коэффициенты теплопроводности разных газов неодинаковы, поэтому можно найти температуру, при которой теплопроводности разных газов совпадают (например, 490°С - для диоксида углерода и кислорода, 70°С - для аммиака и воздуха, 75°С - для диоксида углерода и аргона). При решении определенной аналитической проблемы эти совпадения можно использовать, приняв тройную газовую смесь за квазибинарную.

В газовом анализе можно считать, что теплопроводность является аддитивным свойством. Измерив теплопроводность смеси и зная теплопроводность чистых компонентов бинарной смеси, можно вычислить их концентрации. Однако эту простую зависимость нельзя применять к любой бинарной смеси. Так, например, смеси воздух - водяной пар, воздух - аммиак, оксид углерода - аммиак и воздух - ацетилен при определенном соотношении составляющих имеют максимальную теплопроводность. Поэтому применимость метода теплопроводности ограничена определенной областью концентраций. Для многих смесей имеется нелинейная зависимость теплопроводности и состава. Поэтому необходимо снимать градуировочную кривую, по которой должна быть изготовлена шкала регистрирующего прибора.

Датчики теплопроводности (термокондуктометрические датчики) состоят из четырех маленьких наполненных газом камер небольшого объема с помещенными в них изолированно от корпуса тонкими платиновыми проводниками одинаковых размеров и с одинаковым электрическим сопротивлением. Через проводники протекает одинаковый постоянный ток стабильной величины и нагревает их. Проводники - нагревательные элементы - окружены газом. Две камеры содержат измеряемый газ, другие две - сравнительный газ. Все нагревательные элементы включены в мостик Уитетона, при помощи которого измерение разности температур порядка 0,01°С не представляет трудностей. Такая высокая чувствительность требует точного равенства температур измерительных камер, поэтому всю измерительную систему помещают в термостат или в измерительную диагональ моста, включают сопротивление для температурной компенсации. До тех пор пока отвод тепла от нагревательных элементов в измерительных и сравнительных камерах одинаков, мост находится в равновесии. При подаче в измерительные камеры газа с другой теплопроводностью это равновесие нарушается, изменяется температура чувствительных элементов и вместе с этим их сопротивление. Результирующий ток в измерительной диагонали пропорционален концентрации измеряемого газа. Для повышения чувствительности рабочую температуру чувствительных элементов следует повышать, однако нужно следить, чтобы сохранилась достаточно большая разность теплопроводностей газа. Так, для различных газовых смесей имеется оптимальная по теплопроводности и чувствительности температура. Часто перепад между температурой чувствительных элементов и температурой стенок камер выбирается от 100 до 150°С.

Измерительные ячейки промышленных термокондуктометрических анализаторов состоят, как правило, из массивного металлического корпуса, в котором высверлены измерительные камеры. Этим обеспечиваются равномерное распределение температур и хорошая стабильность градуировки. Так как на показания измерителя теплопроводности влияет скорость газового потока, ввод газа в измерительные камеры осуществляют через байпасный канал. Решения различных конструкторов для обеспечения требуемого обмена газами приведены ниже. В принципе, исходят из того, что основной газовый поток связан соединительными каналами с измерительными камерами, через которые газ протекает под небольшим перепадом. При этом диффузия и тепловая конвекция оказывают решающее влияние на обновление газа в измерительных камерах. Объем измерительных камер может быть очень малым (несколько кубических миллиметров), что обеспечивает небольшое влияние конвективной теплоотдачи на результат измерения. Для уменьшения каталитического эффекта платиновых проводников их различными способами заплавляют в тонкостенные стеклянные капилляры. Для обеспечения стойкости измерительной камеры к коррозии покрывают стеклом все газопроводные части. Это позволяет измерять теплопроводность смесей, содержащих хлор, хлористый водород и другие агрессивные газы. Термокондуктометрические анализаторы с замкнутыми сравнительными камерами распространены преимущественно в химической промышленности. Подбор соответствующего сравнительного газа упрощает калибровку прибора. Кроме того, можно получить шкалу с подавленным нулем. Для уменьшения дрейфа нулевой точки должна быть обеспечена хорошая герметичность сравнительных камер. В особых случаях, например при сильных колебаниях состава газовой смеси, можно работать с проточными сравнительными камерами. При этом с помощью специального реагента из измеряемой газовой смеси удаляют один из компонентов (например, СО а раствором едкого калия), а затем направляют газовую смесь в сравнительные камеры. Измерительная и сравнительная ветви различаются в этом случае только отсутствием одного из компонентов. Такой способ часто делает возможным анализ сложных газовых смесей.

В последнее время вместо металлических проводников в качестве чувствительных элементов иногда используют полупроводниковые терморезисторы. Преимуществом терморезисторов является в 10 раз более высокий по сравнению с металлическими термосопротивлениями температурный коэффициент сопротивления. Этим достигается резкое увеличение чувствительности. Однако одновременно предъявляются намного более высокие требования к стабилизации тока моста и температуры стенок камер.

Раньше других и наиболее широко термокондуктометрические приборы начали применять для анализа отходящих газов топочных печей. Благодаря высокой чувствительности, высокому быстродействию, простоте обслуживания и надежности конструкции, а также своей невысокой стоимости анализаторы этого типа в дальнейшем быстро внедрялись в промышленность.

Термокондуктометрические анализаторы приспособлены лучше всего для измерения концентрации водорода в смесях. При выборе сравнительных газов нужно рассматривать также смеси различных газов. В качестве примера минимальных диапазонов измерения для различных газов можно использовать приведенные ниже данные (табл. 6.1).

Таблица 6.1

Минимальные диапазоны измерения для различных газов,

% к объему

Максимальным диапазоном измерения чаще всего является диапазон 0-100%, при этом 90 или даже 99% могут быть подавлены. В особых случаях термокондуктометрический анализатор дает возможность иметь на одном приборе несколько различных диапазонов измерения. Это используется, например, при контроле процессов заполнения и опорожнения охлаждаемых водородом турбогенераторов на тепловых электростанциях. Из-за опасности взрывов заполнение корпуса генератора производят не воздухом, а сначала в качестве продувочного газа вводят диоксид углерода и затем уже водород. Аналогично производят выпуск газа из генератора. С достаточно высокой воспроизводимостью на одном анализаторе могут быть получены следующие диапазоны измерения: 0-100% (объемн.) СО (в воздухе для продувки углекислым газом), 100-0% Н 2 в СО (для заполнения водородом) и 100-80% Н 2 (в воздухе для контроля чистоты водорода во время работы генератора). Это дешевый способ измерения.

Для определения содержания водорода в выделяющемся при электролизе хлористого калия хлоре с помощью термокондуктометрического анализатора можно работать как с запаянным сравнительным газом (S0 2 , Аг), так и с проточным сравнительным газом. В последнем случае смесь водорода и хлора сначала направляют в измерительную камеру, а затем в печь дожигания с температурой > 200°С. Водород сгорает с избыточным хлором и образует хлористый водород. Образовавшаяся смесь НС и С1 2 подается в сравнительную камеру. При этом по разности теплопроводностей определяют концентрацию водорода. Данный метод заметно снижает влияние примеси небольших количеств воздуха.

Для уменьшения погрешности, возникающей при анализе влажного газа, газ необходимо осушать, что осуществляют либо с помощью поглотителя влаги, либо понижением температуры газа ниже точки росы. Имеется еще одна возможность компенсировать влияние влажности, которая применима лишь при проведении измерения по схеме с проточным сравнительным газом.

Для работы с взрывоопасными газами ряд фирм изготавливает приборы во взрывобезопасном исполнении. В этом случае камеры измерителей теплопроводности рассчитывают на высокое давление, на входе и на выходе из камер устанавливают огнепреградители, а выходной сигнал ограничивается искробезопасным уровнем. Однако и такие приборы нельзя использовать для анализа смесей взрывоопасных газов с кислородом или водорода с хлором.

  • Сантиметр - грамм - секунда - система единиц измерения, которая широко использовалась до принятия Международной системы единиц (СИ).

Для измерения теплопроводности в прошлом использовалось очень много методов . В настоящее время некоторые из них устарели, однако их теория и сейчас представляет интерес, так как они базируются на решениях уравнений теплопроводности для простых систем, которые часто встречаются в практике.

Прежде всего следует отметить, что термические свойства любого материала проявляются в разнообразных сочетаниях; однако если рассматривать их как характеристики материала, то их можно определить из различных экспериментов. Перечислим основные термические характеристики тел и эксперименты, из которых они определяются: а) коэффициент теплопроводности измеряемый при стационарном режиме эксперимента; б) теплоемкость, отнесенная к единице объема, которую измеряют калориметрическими методами; в) величина измеряемая при периодическом стационарном режиме экспериментов; г) температуропроводность х, измеряемая при нестационарном режиме экспериментов. В действительности большинство экспериментов, проводящихся в нестационарном режиме, в принципе, допускает как определение так и определение

Мы кратко опишем здесь наиболее распространенные методы и укажем разделы, в которых они рассматриваются. По существу эти методы делятся на те, в которых измерения ведутся в стационарном режиме (методы стационарного режима), при периодическом нагреве и в нестационарном режиме (методы нестационарного режима); далее они подразделяются на методы, применяемые при исследовании плохих проводников и при исследовании металлов.

1. Методы стационарного режима; плохие проводники. В данном методе следует точно выполнять условия основного эксперимента, изложенного в § 1 настоящей главы, причем исследуемый материал должен иметь форму пластинки . В других вариантах метода можно исследовать материал в виде полого цилиндра (см. § 2 гл. VII) или полой сферы (см. § 2 гл. IX). Иногда исследуемый материал, по которому проходит тепло, имеет форму толстого стержня, однако в данном случае теория оказывается более сложной (см. §§ 1, 2 гл. VI и § 3 гл. VIII).

2. Термические методы стационарного режима; металлы. В этом случае обычно используется металлический образец в форме стержня, концы которого поддерживают при различных температурах. Полуограниченный стержень рассматривается в § 3 гл. IV, а стержень конечной длины - в § 5 гл. IV.

3. Электрические методы стационарного режима, металлы. В этом случае металлический образец в виде проволоки нагревают, пропуская через него электрический ток, а его концы поддерживают при заданных температурах (см. § 11 гл. IV и пример IX § 3 гл. VIII). Можно использовать также случай радиального потока тепла в проволоке, нагреваемой электрическим током (см. пример V § 2 гл. VII).

4. Методы стационарного режима движущиеся жидкости. В этом случае измеряется температура жидкости, движущейся между двумя резервуарами, в которых поддерживается различная температура (см. § 9, гл. IV).

5. Методы периодического нагрева. В этих случаях условия на концах стержня или пластинки изменяются с периодом по достижении установившегося состояния измеряют температуры в определенных точках образца. Случай полуограниченного стержня рассматривается в § 4 гл. IV, а стержня конечной длины - в § 8 той же главы. Подобный метод используется для определения температуропроводности грунта при температурных колебаниях, вызываемых солнечным нагревом (см, § 12 гл. II).

В последнее время эти методы стали играть важную роль в измерениях низких температур; они обладают также тем преимуществом, что в теории относительно сложных систем можно пользоваться методами, разработанными для исследования электрических волноводов (см. § 6 гл. И).

6. Методы нестационарного режима. В прошлом методы нестационарного режима использовались несколько меньше, чем методы стационарного режима. Их недостаток заключается в трудности установления того, насколько действительные граничные условия в эксперименте согласуются с условиями, постулируемыми теорией. Учесть подобное расхождение (например, когда речь идет о контактном сопротивлении на границе) очень трудно, а это более важно для указанных методов, чем для методов стационарного режима (см. § 10 гл. II). Вместе с тем методы нестационарного режима сами по себе обладают известными преимуществами. Так, некоторые из этих методов пригодны для проведения очень быстрых измерений и для учета малых изменений температуры; кроме того, ряд методов можно использовать «на месте», без доставки образца в лабораторию, что весьма желательно, особенно при исследовании таких материалов, как грунты и горные породы. В большинстве старых методов используется лишь последний участок графика зависимость температуры от времени; при этом решение соответствующего уравнения выражается одним экспоненциальным членом. В § 7 гл. IV, § 5 гл. VI, § 5 гл. VIII и § 5 гл. IX рассматривается случай охлаждения тела простой геометрической формы при линейной теплопередаче с его поверхности. В § 14 гл. IV рассматривается случай нестационарной температуры в проволоке, нагреваемой электрическим током. В некоторых случаях используется весь график изменения температуры в точке (см. § 10 гл. II и § 3 гл. III).

В соответствии с требованиями федерального закона № 261-ФЗ «Об энергосбережении» требования к теплопроводности строительных и теплоизоляционных материалов в России были ужесточены. Сегодня измерение теплопроводности является одним из обязательных пунктов при принятии решения об использовании материала в качестве теплоизолятора.

Для чего необходимо измерение теплопроводности в строительстве?

Контроль теплопроводности строительных и теплоизоляционных материалов проводится на всех стадиях их сертификации и производства в лабораторных условиях, когда материалы подвергают воздействию различных факторов, влияющих на его эксплуатационные свойства. Есть несколько распространённых методов измерения теплопроводности . Для точных лабораторных испытаний материалов низкой теплопроводности (ниже 0,04 – 0,05 Вт/м*К) рекомендуют использовать приборы, использующие метод стационарного теплового потока. Их применение регламентировано ГОСТ 7076.

Компания «Интерприбор» предлагает измеритель теплопроводности, цена которого выгодно отличается от имеющихся на рынке и отвечает всем современным требованиям. Он предназначен для лабораторного контроля качества строительных и теплоизоляционных материалов.

Преимущества измерителя теплопроводности ИТС-1

Измеритель теплопроводности ИТС-1 имеет оригинальное моноблочное исполнение и характеризуется следующими преимуществами:

  • автоматический цикл измерений;
  • высокоточный измерительный тракт, позволяющий стабилизировать температуры холодильника и нагревателя;
  • возможность градуировки прибора под отдельные виды исследуемых материалов, что дополнительно повышает точность результатов;
  • экспресс-оценка результата в процессе выполнения измерений;
  • оптимизированная «горячая» охранная зона;
  • информативный графический дисплей, упрощающий контроль и анализ результатов измерений.

ИТС-1 поставляется в единственной базовой модификации, которая по желанию клиента может быть дополнена контрольными образцами (оргстекло и пеноплекс), коробом для сыпучих материалов и защитным кофром для хранения и транспортировки прибора.