» »

Коэффициент полезного действия. Формула, определение. Что такое коэффициент полезного действия

19.10.2019

Общие положения

Коэффициент полезного действия определяется как отношение полезной, или отдаваемой, мощности P 2 к потребляемой мощности P 1:

Современные электрические машины имеют высокий коэффициент полезного действия (к. п. д.). Так, у машин постоянного тока мощностью 10 кВт к. п. д. составляет 83 – 87%, мощностью 100 кВт – 88 – 93% и мощностью 1000 кВт – 92 – 96%. Лишь малые машины имеют относительно низкие к. п. д.; например, у двигателя постоянного тока мощностью 10 Вт к. п. д. 30 – 40%.

Кривая к. п. д. электрической машины η = f (P 2) сначала быстро растет с увеличением нагрузки, затем к. п. д. достигает максимального значения (обычно при нагрузке, близкой к номинальной) и при больших нагрузках уменьшается (рисунок 1). Последнее объясняется тем, что отдельные виды потерь (электрические I а 2 r а и добавочные) растут быстрее, чем полезная мощность.

Прямой и косвенный методы определения коэффициента полезного действия

Прямой метод определения к. п. д. по экспериментальным значениям P 1 и P 2 согласно формуле (1) может дать существенную неточность, поскольку, во-первых, P 1 и P 2 являются близкими по значению и, во-вторых, их экспериментальное определение связано с погрешностями. Наибольшие трудности и погрешности вызывает измерение механической мощности.

Если, например, истинные значения мощности P 1 = 1000 кВт и P 2 = 950 кВт могут быть определены с точностью 2%, то вместо истинного значения к. п. д.

η = 950/1000 = 0,95

можно получить

Поэтому ГОСТ 25941-83, "Машины электрические вращающиеся. Методы определения потерь и коэффициента полезного действия", предписывает для машин с η% ≥ 85% косвенный метод определения к. п. д., при котором по экспериментальным данным определяется сумма потерь p Σ .

Подставив в формулу (1) P 2 = P 1 - p Σ , получим

(3)

Применив здесь подстановку P 1 = P 2 + p Σ , получим другой вид формулы:

(4)

Так как более удобно и точно можно измерять электрические мощности (для двигателей P 1 и для генераторов P 2), то для двигателей более подходящей является формула (3) и для генераторов формула (4). Методы экспериментального определения отдельных потерь и суммы потерь p Σ описываются в стандартах на электрические машины и в руководствах по испытанию и исследованию электрических машин. Если даже p Σ определяется со значительно меньшей точностью, чем P 1 или P 2 , при использовании вместо выражения (1) формул (3) и (4) получаются все же значительно более точные результаты.

Условия максимума коэффициента полезного действия

Различные виды потерь различным образом зависят от нагрузки. Обычно можно считать, что одни виды потерь остаются постоянными при изменении нагрузки, а другие являются переменными. Например, если генератор постоянного тока работает с постоянной скоростью вращения и постоянным потоком возбуждения, то механические и магнитные потери являются также постоянными. Наоборот, электрические потери в обмотках якоря, добавочных полюсов и компенсационной изменяются пропорционально I а ², а в щеточных контактах – пропорционально I а. Напряжение генератора при этом также приблизительно постоянно, и поэтому с определенной степенью точности P 2 ∼ I а.

Таким образом, в общем, несколько идеализированном случае можно положить, что

где p 0 – постоянные потери, не зависящие от нагрузки; p 1 – значение потерь, зависящих от первой степени k нг при номинальной нагрузке; p 2 – значение потерь, зависящих от квадрата k нг, при номинальной нагрузке.

Подставим P 2 из (5) и p Σ из (7) в формулу к. п. д.

(8)

Установим, при каком значении k нг к. п. д. достигает максимального значения, для чего определим производную d η/dk нг по формуле (8) и приравняем ее к нулю:

Это уравнение удовлетворяется, когда его знаменатель равен бесконечности, т. е. при k нг = ∞. Этот случай не представляет интереса. Поэтому необходимо положить равным нулю числитель. При этом получим

Таким образом, к. п. д. будет максимальным при такой нагрузке, при которой переменные потери k нг ² × p 2 , зависящие от квадрата нагрузки, становятся равными постоянным потерям p 0 .

Значение коэффициента нагрузки при максимуме к. п. д., согласно формуле (9),

(10)

Если машина проектируется для заданного значения η макс, то, поскольку потери k нг × p 1 обычно относительно малы, можно считать, что

p 0 + p 2 ≈ p Σ = const.

Изменяя при этом соотношение потерь p 0 и p 2 , можно достичь максимального значения к. п. д. при различных нагрузках. Если машина работает большей частью при нагрузках, близких к номинальной, то выгодно, чтобы значение k нг [смотрите формулу (10)] было близко к единице. Если машина работает в основном при малых нагрузках, то выгодно, чтобы значение k нг [смотрите формулу (10)] было соответственно меньше.

Коэффициент полезного действия (КПД) - это характеристика результативности системы в отношении преобразования или передачи энергии, который определяется отношением полезно использованной энергии к суммарной энергии, полученной системой.

КПД - величина безразмерная, обычно ее выражают в процентах:

Коэффициент полезного действия (КПД) теплового двигателя определяется по формуле: , где A = Q1Q2. КПД теплового двигателя всегда меньше 1.

Цикл Карно - это обратимый круговой газовый процесс, который состоит из последовательно стоящих двух изотермических и двух адиабатных процессов, выполняемых с рабочим телом.

Круговой цикл, включающий в себя две изотермы и две адиабаты, соответствует максимальному КПД.

Французский инженер Сади Карно в 1824 г. вывел формулу максимального КПД идеального теплового двигателя, где рабочее тело - это идеальный газ, цикл которого состоял из двух изотерм и двух адиабат, т. е. цикл Карно. Цикл Карно - реальный рабочий цикл теплового двигателя, свершающего работу за счет теплоты, подводимой рабочему телу в изотермическом процессе.

Формула КПД цикла Карно, т. е. максимального КПД теплового двигателя имеет вид: , где T1 - абсолютная температура нагревателя, Т2 - абсолютная температура холодильника.

Тепловые двигатели - это конструкции, в которых тепловая энергия превращается в механическую.

Тепловые двигатели многообразны как по конструкции, так и по назначению. К ним относятся паровые машины, паровые турбины, двигатели внутреннего сгорания, реактивные двигатели.

Однако, несмотря на многообразие, в принципе действия различных тепловых двигателей есть общие черты. Основные компоненты каждого теплового двигателя:

  • нагреватель;
  • рабочее тело;
  • холодильник.

Нагреватель выделяет тепловую энергию, при этом нагревает рабочее тело, которое находится в рабочей камере двигателя. Рабочим телом может быть пар или газ.

Приняв количество теплоты, газ расширяется, т.к. его давление больше внешнего давления, и двигает поршень, производя положительную работу. При этом его давление падает, а объем увеличивается.

Если сжимать газ, проходя те же состояния, но в обратном направлении, то совершим ту же по абсолютному значению, но отрицательную работу. В итоге вся работа за цикл будет равна нулю.

Для того чтобы работа теплового двигателя была отлична от нуля, работа сжатия газа должна быть меньше работы расширения.

Чтобы работа сжатия стала меньше работы расширения, необходимо, чтобы процесс сжатия проходил при меньшей температуре, для этого рабочее тело нужно охладить, поэтому в конструкцию теплового двигателя входит холодильник. Холодильнику рабочее тело отдает при соприкосновении с ним количество теплоты.

Энергия, подводимая к механизму в виде работы движущих сил А дв.с . и моментов за цикл установившегося движения, расходуется на совершение полезной работы А п.с . , а также на совершение работы А Fтр , связанной с преодолением сил трения в кинематических парах и сил сопротивления среды.

Рассмотрим установившееся движение. Приращение кинетической энергии равно нулю, т.е.

При этом работы сил инерции и сил тяжести равны нулю А Ри = 0 , А G = 0 . Тогда для установившегося движения работа движущих сил равна

А дв.с. =А п.с. + А Fтр .

Следовательно, за полный цикл установившегося движения работа всех движущих сил равна сумме работ сил производственных сопротивлений и непроизводственных сопротивлений (сил трения).

Механический коэффициент полезного действия η (КПД) – отношение работы сил производственных сопротивлений к работе всех движущих сил за время установившегося движения :

η = . (3.61)

Как видно из формулы (3.61), КПД показывает, какая доля механической энергии, приведенной к машине, полезно расходуется на совершение той работы, для которой машина создана.

Отношение работы сил непроизводственных сопротивлений к работе движущих сил называется коэффициентом потерь :

ψ = . (3.62)

Механический коэффициент потерь показывает, какая доля механической энергии, подведенной к машине, превращается в конечном счете в теплоту и бесполезно теряется в окружающем пространстве.

Отсюда имеем связь между КПД и коэффициентом потерь

η =1- ψ .

Из этой формулы вытекает, что ни в одном механизме работа сил непроизводственных сопротивлений не может равняться нулю, поэтому КПД всегда меньше единице (η <1 ). Из этой же формулы следует, что КПД может равняться нулю, если А дв.с =А Fтр . Движение, при котором А дв.с = А Fтр называетсяхолостым . КПД не может быть меньше нуля, т.к. для этого необходимо, чтобы А дв.с <А Fтр . Явление, при котором механизм находится в покое и при этом удовлетворяется условие А дв.с <А Fтр, называется явлением самоторможения механизма . Механизм, у которого η = 1, называется вечным двигателем .

Таким образом, коэффициент полезного действия находится в пределах

0 £ η < 1 .

Рассмотрим определение КПД при различных способах соединения механизмов.

3.2.2.1. Определение КПД при последовательном соединении

Пусть имеется n последовательно соединенных между собой механизмов (рисунок 3.16).

А дв.с. 1 А 1 2 А 2 3 А 3 А n-1 n A n

Рисунок 3.16 - Схема последовательно соединенных механизмов

Первый механизм приводится в движение движущими силами, которые совершают работу А дв.с . Так как полезная работа каждого предыдущего механизма, затрачиваемая на производственные сопротивления, является работой движущих сил для каждого последующего механизма, то КПД первого механизма будет равняться:


η 1 =А 1 /А дв.с ..

Для второго механизма КПД равняется:

η 2 =А 2 /А 1 .

И, наконец, для n-го механизма КПД будет иметь вид:

η n =А n /А n-1

Общий коэффициент полезного действия равен:

η 1 n =А n /А дв.с.

Величина общего КПД может быть получена, если перемножить КПД каждого отдельного механизма, а именно:

η 1 n = η 1 η 2 η 3 …η n = .

Следовательно, общий механический коэффициент полезного действия последовательно соединенных механизмов равняется произведению механических коэффициентов полезного действия отдельных механизмов, составляющих одну общую систему :

η 1 n = η 1 η 2 η 3 …η n .(3.63)

3.2.2.2 Определение КПД при смешанном соединении

На практике соединение механизмов оказывается более сложным. Чаще последовательное соединение сочетается с параллельным. Такое соединение называется смешанным. Рассмотрим пример сложного соединения (рисунок 3.17).

Поток энергии от механизма 2 распределяется по двум направлениям. В свою очередь от механизма 3 ¢¢ поток энергии распределяется также по двум направлениям. Общая работа сил производственных сопротивлений равна:

А п.с. = A ¢ n + A ¢ ¢ n + A ¢ ¢¢ n .

Общий КПД всей системы будет равен:

η =А п.с /А дв.с = (A ¢ n + A ¢ ¢ n + A ¢ ¢¢ n )/А дв.с . (3.64)

Чтобы определить общий КПД, нужно выделить потоки энергии, в которых механизмы соединены последовательно, и рассчитать КПД каждого потока. На рисунке 3.17 показаны сплошной линией I-I, штриховой линией II-II и штрих- пунктирной линией III-III три потока энергии от общего источника.

А дв.с. А 1 А ¢ 2 А ¢ 3 … А ¢ n-1 A ¢ n

II А ¢¢ 2 II

А ¢¢ 3 4 ¢¢ А ¢¢ 4 А ¢¢ n-1 n ¢¢ A ¢¢ n

Коэффициент полезного действия (КПД) - термин, которые можно применить, пожалуй, к каждой системе и устройству. Даже у человека есть КПД, правда, наверно, пока не существует объективной формулы для его нахождения. В этой статье расскажем подробно, что такое КПД и как его можно рассчитать для различных систем.

КПД-определение

КПД - это показатель, характеризующий эффективность той или иной системы в отношении отдачи или преобразования энергии. КПД - безмерная величина и представляется либо числовым значением в диапазоне от 0 до 1, либо в процентах.

Общая формула

КПД обозначается символом Ƞ.

Общая математическая формула нахождения КПД записывается следующим образом:

Ƞ=А/Q, где А - полезная энергия/работа, выполненная системой, а Q - энергия, потребляемая этой системой для организации процесса получения полезного выхода.

Коэффициент полезного действия, к сожалению, всегда меньше единицы или равен ей, поскольку, согласно закону сохранения энергии, мы не можем получить работы больше, чем потрачено энергии. Кроме того, КПД, на самом деле, крайне редко равняется единице, так как полезная работа всегда сопровождается наличием потерь, например, на нагрев механизма.

КПД теплового двигателя

Тепловой двигатель - это устройство, превращающее тепловую энергию в механическую. В тепловом двигателе работа определяется разностью количества теплоты, полученного от нагревателя, и количества теплоты, отданной охладителю, а потому КПД определяется по формуле:

  • Ƞ=Qн-Qх/Qн, где Qн - количество теплоты, полученное от нагревателя, а Qх - количество теплоты, отданное охладителю.

Считается, что высочайший КПД обеспечивают двигатели, работающие по циклу Карно. В данном случае КПД определяется по формуле:

  • Ƞ=T1-T2/T1, где Т1 - температура горячего источника, T2 - температура холодного источника.

КПД электрического двигателя

Электрический двигатель - это устройство, которое преобразует электрическую энергию в механическую, так что КПД в данном случае - это коэффициент эффективности устройства в отношении преобразования электрической энергии в механическую. Формула нахождения КПД электрического двигателя выглядит так:

  • Ƞ=P2/P1, где P1 - подведенная электрическая мощность, P2 - полезная механическая мощность, выработанная двигателем.

Электрическая мощность находится как произведение тока и напряжения системы (P=UI), а механическая - как отношение работы к единице времени (P=A/t)

КПД трансформатора

Трансформатор - это устройство, которое преобразует переменный ток одного напряжения в переменный ток другого напряжения, сохраняя частоту. Кроме того, трансформаторы также могут преобразовывать переменный ток в постоянный.

Коэффициент полезного действия трансформатора находится по формуле:

  • Ƞ=1/1+(P0+PL*n2)/(P2*n), где P0 - потери режима холостого хода, PL - нагрузочные потери, P2 - активная мощность, отдаваемая нагрузке, n - относительная степень нагружения.

КПД или не КПД?

Стоит заметить, что помимо КПД существует еще ряд показателей, которые характеризуют эффективность энергетических процессов, и иногда мы можем встретить описания типа - КПД порядка 130%, однако в данном случае нужно понимать, что термин применен не совсем корректно, и, вероятнее всего, автор или производитель понимает под данной аббревиатурой несколько иную характеристику.

К примеру, тепловые насосы отличаются тем, что они могут отдавать больше теплоты, чем расходуют. Так, холодильная машина может отвести от охлаждаемого объекта больше теплоты, чем затрачено в энергетическом эквиваленте на организацию отвода. Показатель эффективности холодильной машины называется холодильным коэффициентом, обозначается буквой Ɛ и определяется по формуле: Ɛ=Qx/A, где Qx - тепло, отводимое от холодного конца, A - работа, затраченная на процесс отвода. Однако иногда холодильный коэффициент называют и КПД холодильной машины.

Интересно также, что КПД котлов, работающих на органическом топливе, рассчитывается обычно по низшей теплоте сгорания, при этом он может получиться больше единицы. Тем не менее, его все равно традиционно называют КПД. Можно определять КПД котла по высшей теплоте сгорания, и тогда он всегда будет меньше единицы, однако в данном случае неудобно будет сравнивать показатели котлов с данными других установок.

Используя тот или иной механизм, мы совершаем работу, всегда превышающую ту, которая необходима для достижения поставленной цели. В соответствии с этим различают полную или затраченную работу A з и полезную работу A п . Если, например, наша цель - поднять груз массой m на высоту h , то полезная работа - это та, которая обусловлена лишь преодолением силы тяжести, действующей на груз. При равномерном подъеме груза, когда прикладываемая нами сила равна силе тяжести груза, эта работа может быть найдена следующим образом:

A п = F т h = mgh . (24.1)

Если же мы применяем для подъема груза блок или какой-либо другой механизм, то, кроме силы тяжести груза, нам приходится преодолевать еще и силу тяжести частей механизма, а также действующую в механизме силу трения. Например, используя подвижный блок, мы вынуждены будем совершать дополнительную работу по подъему самого блока с тросом и по преодолению силы трения в оси блока. Кроме того, выигрывая в силе, мы всегда проигрываем в пути (об этом подробнее будет рассказано ниже), что также влияет на работу. Все это приводит к тому, что затраченная нами работа оказывается больше полезной:

A з > A п

Полезная работа всегда составляет лишь некоторую часть полной работы, которую совершает человек, используя механизм.

Физическая величина, показывающая, какую долю составляет полезная работа от всей затраченной работы, называется коэффициентом полезного действия механизма.

Сокращенное обозначение коэффициента полезного действия - КПД.

Чтобы найти КПД механизма, надо полезную работу разделить на ту, которая была затрачена при использовании данного механизма.

Коэффициент полезного действия часто выражают в процентах и обозначают греческой буквой η (читается «эта»):

η =* 100% (24.2)

Поскольку числитель A п в этой формуле всегда меньше знаменателя A з , то КПД всегда оказывается меньше 1 (или 100%).

Конструируя механизмы, стремятся увеличить их КПД. Для этого уменьшают трение в осях механизмов и их массу. В тех случаях, когда трение ничтожно мало и используемые механизмы имеют массу, пренебрежимо малую по сравнению с массой поднимаемого груза, коэффициент полезного действия оказывается лишь немного меньше 1. В этом случае затраченную работу можно считать примерно равной полезной работе:

A з ≈ A п (24.3)

Следует помнить, что выигрыша в работе с помощью простого механизма получить нельзя.

Поскольку каждую из работ в равенстве (24.3) можно выразить в виде произведения соответствующей силы на пройденный путь, то это равенство можно переписать так:

F 1 s 1 ≈ F 2 s 2 (24.4)

Отсюда следует, что,

выигрывая с помощью механизма в силе, мы во столько же раз проигрываем в пути, и наоборот.

Этот закон называют «золотым правилом» механики . Его автором является древнегреческий ученый Герон Александрийский, живший в I в. н. э.

«Золотое правило» механики является приближенным законом, так как в нем не учитывается работа по преодолению трения и силы тяжести частей используемых приспособлений. Тем не менее оно бывает очень полезным при анализе работы любого простого механизма.

Так, например, благодаря этому правилу мы сразу можем сказать, что рабочему, изображенному на рисунке 47, при двукратном выигрыше в силе для подъема груза на 10 см придется опустить противоположный конец рычага на 20 см. То же самое будет и в случае, изображенном на рисунке 58. Когда рука человека, держащего веревку, опустится на 20 см, груз, прикрепленный к подвижному блоку, поднимется лишь на 10 см.

1. Почему затраченная при использовании механизмов работа оказывается все время больше полезной работы? 2. Что называют коэффициентом полезного действия механизма? 3. Может ли КПД механизма быть равным 1 (или 100%)? Почему? 4. Каким образом увеличивают КПД? 5. В чем заключается «золотое правило» механики? Кто его автор? 6. Приведите примеры проявления «золотого правила» механики при использовании различных простых механизмов.