» »

Защита электродвигателей от токов перегрузки и короткого замыкания. Аварийные режимы асинхронных электродвигателей DjVu. Недостатки тепловых реле

22.06.2020

Перегрузка электродвигателя возникает в следующих случаях:

· при затянувшемся пуске или самозапуске;

· по технологическим причинам и перегрузке механизмов;

· в результате обрыва одной фазы;

· при повреждении механической части электродвигателя или механизма, вызывающем увеличение момента М с и торможение электродвигателя.

Перегрузки бывают устойчивыми и кратковременными. Для электродвигателя опасны только устойчивые перегрузки.

Значительное увеличение тока электродвигателя получается также при обрыве фазы, что встречается, например, у электродвигателей, защищаемых предохранителями, при перегорании одного из них. При номинальной загрузке в зависимости от параметров электродвигателя увеличение тока статора при обрыве фазы будет составлять примерно (1,6÷2,5) I ном. Эта перегрузка носит устойчивый характер. Также устойчивый характер носят сверхтоки, обусловленные механическими повреждениями электродвигателя или вращаемого им механизма и перегрузкой механизма.

Основной опасностью сверхтоков для электродвигателя является сопровождающее их повышение температуры отдельных частей и в первую очередь обмоток. Повышение температуры ускоряет износ изоляции обмоток и снижает срок службы электродвигателя.

При решении вопроса об установке защиты от перегрузки на электродвигателе и характере ее действия руководствуются условиями его работы.

На электродвигателях механизмов, не подверженных технологическим перегрузкам (например, электродвигателях циркуляционных, питательных насосов и т. п.) и не имеющих тяжелых условий пуска или самозапуска, защита от перегрузки н е устанавливается.

На электродвигателях подверженных технологическим перегрузкам (например, электродвигателях мельниц, дробилок, багерных насосов и т. п.), а также на электродвигателях, самозапуск которых не обеспечивается, защита от перегрузки должна устанавливаться.

Защита от перегрузки выполняетсяс действием на отключение в случае, если не обеспечивается самозапуск электродвигателей или с механизма не может быть снята технологическая перегрузка без остановки электродвигателя.

Защита от перегрузки электродвигателя выполняется с действием на разгрузку механизма или сигнал, если технологическая перегрузка может быть снята с механизма автоматически или вручную персоналом без остановки механизма и электродвигатели находятся под наблюдением персонала.

На электродвигателях механизмов, могущих иметь как перегрузку, устраняемую при работе механизма, так и перегрузку, устранение которой невозможно без остановки механизма, целесообразно предусматривать действие защиты от сверхтоков с меньшей выдержкой времени на разгрузку механизма (если это возможно) и большей выдержкой времени на отключение электродвигателя. Ответственные электродвигатели собственных нужд электрических станций находятся под постоянным наблюдением дежурного персонала, поэтому защита их от перегрузки выполняется преимущественно с действием на сигнал.

Защита с тепловым реле. Лучше других могут обеспечивать характеристику, приближающуюся к перегрузочной характеристике электродвигателя, тепловые реле, которые реагируют на количество тепла, выделенного в сопротивлении его нагревательного элемента.

Защита от перегрузки с токовыми реле. Для защиты электродвигателей от перегрузки обычно применяются максимальные токовые защиты с использованием токовых реле с ограниченно зависимыми характеристиками выдержки времени типа РТ-80 или максимальные токовые защиты, выполненные комбинацией мгновенных токовых реле и реле времени.

Наверно все знают, что различные устройства работают на основе электрических двигателей. Но для чего нужна защита электродвигателей осознает лишь малая часть пользователей. Оказывается они могут сломаться в результате различных непредвиденных ситуаций.

Чтобы избежать проблем с высокими затратами на ремонт, неприятных простоев и дополнительных материальных потерь используются качественные защитные устройства. Далее разберемся в их устройстве и возможностях.

Как создается защита для электродвигателя?

Постепенно рассмотрим основные устройства защиты электродвигателей и особенности их эксплуатации. Но сейчас расскажем об трех уровнях защиты:

  • Внешняя версия защиты для предохранения от короткого замыкания. Обычно относится к разным видам либо представлена в виде реле. Они обладают официальным статусом и обязательны к установке согласно нормам безопасности на территории РФ.
  • Внешняя версия защиты электродвигателей от перегрузки помогает предотвратить опасные повреждения либо критические сбои в процессе работы.
  • Встроенный тип защиты спасет в случае заметного перегрева. И это защитит от критических повреждений либо сбоев в процессе эксплуатации. В этом случае обязательны выключатели внешнего типа иногда применяется реле для перезагрузки.


Из-за чего отказывает электродвигатель?

В процессе эксплуатации иногда появляются непредвиденные ситуации, останавливающие работу двигателя. Из-за этого рекомендуется заранее обеспечить надежную защиту электродвигателя.

Можете ознакомиться с фото защиты электродвигателя различного типа чтобы иметь представление о том, как она выглядит.

Рассмотрим случаи отказа электродвигателей в которых с помощью защиты можно избежать серьезных повреждений:

  • Недостаточный уровень электрического снабжения;
  • Высокий уровень подачи напряжения;
  • Быстрое изменение частоты подачи тока;
  • Неправильный монтаж электродвигателя либо хранения его основных элементов;
  • Увеличение температуры и превышение допустимого значения;
  • Недостаточная подача охлаждения;
  • Повышенный уровень температуры окружающей среды;
  • Пониженный уровень атмосферного давления, если эксплуатация двигателя происходит на увеличенной высоте на основе уровня моря;
  • Увеличенная температура рабочей жидкости;
  • Недопустимая вязкость рабочей жидкости;
  • Двигатель часто выключается и включается;
  • Блокирование работы ротора;
  • Неожиданный обрыв фазы.

Чтобы защита электродвигателей от перегрузки справилась с перечисленными проблемами и смогла защитить основные элементы устройства необходимо использовать вариант на основе автоматического отключения.

Часто для этого используется плавкая версия предохранителя, поскольку она отличается простотой и способна выполнить много функций:

Версия на основе плавкого предохранительного выключателя представлена аварийным выключателем и плавким предохранителем, соединенных на основе общего корпуса. Выключатель позволяет размыкать либо замыкать сеть с помощью механического способа, а плавкий предохранитель создает качественную защиту электродвигателя на основе воздействия электрического тока. Однако выключателем пользуются в основном для процесса сервисного обслуживания, когда необходимо остановить передачу тока.

Плавкие версии предохранителей на основе быстрого срабатывания считаются отличными защитниками от коротких замыканий. Но непродолжительные перегрузки могут привести к поломке предохранителей этого вида. Из-за этого рекомендуется использовать их на основе воздействия незначительного переходного напряжения.

Плавкие предохранители на основе задержки срабатывания способны защитить от перегрузки либо различных коротких замыканий. Обычно они способны выдержать 5-краткое увеличение напряжения в течение 10-15 секунд.

Важно: Автоматические версии выключателей отличаются по уровню тока для срабатывания. Из-за этого лучше использовать выключатель способный выдержать максимальный ток в процессе короткого замыкания, появляющегося на основе данной системы.

Тепловое реле

В различных устройствах используется тепловое реле для защиты двигателя от перегрузок под воздействием тока либо перегрева рабочих элементов. Оно создается с помощью металлических пластин, обладающих различным коэффициентом расширения под воздействием тепла. Обычно его предлагают в связке с магнитными пускателями и автоматической защитой.

Автоматическая защита двигателя

Автоматы для защиты электродвигателей помогают обезопасить обмотку от появления короткого замыкания, защищают от нагрузки либо обрыва любой из фаз. Их всегда используют в качестве первого звена защиты в сети питания мотора. Потом используется магнитный пускатель, если необходимо он дополняется тепловым реле.

Каковы критерии выбора, подходящего автомата:

  • Необходимо учитывать величину рабочего тока электродвигателя;
  • Количество, использующихся обмоток;
  • Возможность автомата справляться с током в результате короткого замыкания. Обычные версии работают на уровне до 6 кА, а лучшие до 50 кА. Стоит учитывать и скорость срабатывания у селективных менее 1 секунды, нормальных меньше 0,1 секунды, быстродействующих около 0,005 секунды;
  • Размеры, поскольку большая часть автоматов можно подключать с помощью шины на основе фиксированного типа;
  • Вид расцепления цепи – обычно применяется тепловой либо электромагнитный способ.


Универсальные блоки защиты

Различные универсальные блоки защиты электродвигателей помогают уберечь двигатель с помощью отключения от напряжения либо блокированием возможности запуска.

Они срабатывают в таких случаях:

  • Проблемы с напряжением, характеризующиеся скачками в сети, обрывами фаз, нарушением чередования либо слипания фаз, перекосом фазного или линейного напряжения;
  • Механической перегруженности;
  • Отсутствие крутящего момента для вала ЭД;
  • Опасных эксплуатационной характеристике изоляции корпуса;
  • Если произошло замыкание на землю.

Хотя защита от понижения напряжения, может быть, организована и другими способами мы рассмотрели основные из них. Теперь у вас есть представление о том зачем необходимо защищать электродвигатель, и как это осуществляется с помощью различных способов.

Фото защиты электродвигателя

Нуждается в надежной защите от теплового перегрева, короткого замыкания и всевозможных перегрузок, которые могут быть вызваны аварийными ситуациями или неисправностями. Чтобы не допустить подобных ситуаций, в промышленности производится довольно много разных устройств, которые как в отдельном порядке, так и в комплекте с другими средствами, образуют блок мощной защиты электродвигателя. Помимо этого, в современные схемы обязательно включают различные элементы, предназначенные для того, чтобы комплексно защитить электрооборудование в случае исчезновении напряжения одной или сразу нескольких фаз питания. Защита электродвигателей очень важна в любом производстве, ведь без нее довольно трудно представить полноценную работу станков и агрегатов.

Существуют сложные средства защиты электродвигателей, использующихся для противодействия аварийным ситуациям, в числе которых могут быть такие случаи как, например, несанкционированный пуск, работа сразу на двух фазах, работа при низком или высоком напряжении, короткое замыкание электрической цепи.

К таким средствам относятся предохранители или автоматические выключатели с кривой D (они защищают электродвигатель от токов короткого замыкания). Особенность их работы заключается в том, что такие автоматические устройства не отключаются при запуске электродвигателя, если сила его пускового тока достигает высокой отметки на период, который по времени меньше одной секунды. Наиболее популярная марка подобных выключателей — это, например, Acti 9.

Также могут использоваться специальные автоматические выключатели для защиты электродвигателей. Автомат защиты электродвигателя имеет электромагнитный и регулируемый тепловой расцепитель, что дает возможность защитить агрегат от короткого замыкания и перегрузки. В результате существенно уменьшается время простоя двигателя, а также снижаются расходы на его техобслуживание. Здесь можно упомянуть такие марки как, например, GV2(3), PKZM, MPE 25 и пр.Используются для защиты и тепловые реле, которые устанавливаются на контакторы (обеспечивают защиту от перегрузки). Реле тепловой защиты отключает трехфазные электродвигатели при перегреве с использованием встроенного вспомогательного выключателя. Известные марки таких реле — это, в частности, SIRIUS и ZB.Реле контроля напряжения, асимметрии и наличия фаз в свою очередь обесточивает двигатель в случае пропадания одной из фаз, превышении или понижении допустимого напряжения. Благодаря такому реле в случае аварии трехфазная нагрузка автоматически отключается. Кроме того, реле контроля напряжения самостоятельно возвращается к рабочему режиму после того, как сеть восстанавливается. Популярные марки подобных реле выпускаются компаниями EKF и ABB.

Устройство защиты электродвигателя — это залог его стабильной работы. Основной принцип работы таких устройств заключается в том, что они следят за потреблением тока двигателем, а также измеряют температуру его обмотки и отключают двигатель, когда обмотка нагревается больше предельно допустимой температуры.

«- Есть ли у Вас защита двигателя?
— Да, есть. Там сидит специальный человек, следит за двигателем. Когда легкий дымок с двигателя пойдет, его выключает, не дает ему сгореть.»

Это реальный диалог с одним из наших покупателей. Оставим в стороне вопрос о технической культуре и уровне образования, — здесь рассмотрим только технические вопросы как решить эту проблему.

От чего электродвигатель выходит из строя? При прохождении электрического тока через проводник в этом проводнике выделяется тепло. Поэтому электрический двигатель при работе, естественно, нагревается. Производителем рассчитано, что при номинальном токе двигатель не перегреется.

А вот если ток через обмотки двигателя по каким-то причинам увеличится — то электродвигатель начнет перегреваться, и если этот процесс не остановить — то в дальнейшем перегреется и выйдет из строя. В обмотках из-за перегрева начинает плавиться изоляция проводников и происходит короткое замыкание проводников. Поэтому одна из задач защиты - ограничит ток, протекающий через электродвигатель, не выше допустимого.

Одним из самых распространенных способов — это защита электродвигателя при помощи теплового реле. Тепловые реле применяются для защиты электродвигателей от перегрузок недопустимой продолжительности, а также от обрыва одной из фаз.

Конструктивно тепловое реле представляют собой набор биметаллических расцепителей (по одному на каждую фазу), по которым протекает ток электродвигателя, оказывающий тепловое действие на пластины. Под действием тепла происходит изгиб биметаллической пластины, приводящий в действие механизм расцепления. При этом происходит изменение состояния вспомогательных контактов, которые используются в цепях управления и сигнализации. Реле снабжаются биметаллическим температурным компенсатором с обратным прогибом по отношению к биметаллическим пластинам для компенсации зависимости от температуры окружающей среды, обладают возможностью ручного или автоматического взвода (возврата).

Реле имеет шкалу, калиброванную в амперах. В соответствии с международными стандартами шкала должна соответствовать значению номинального тока двигателя, а не тока срабатывания. Ток несрабатывания реле составляет 1,05 I ном. При перегрузке электродвигателя на 20% (1,2 I ном), произойдет его срабатывание в соответствии с токо-временной характеристикой.

Реле, в зависимости от конструкции, могут монтироваться непосредственно на магнитные пускатели, в корпуса пускателей или на щиты. Правильно подобранные тепловые реле защищают двигатель не только от перегрузки, но и от заклинивания ротора, перекоса фаз и от затянутого пуска.

Как правильно подобрать тепловое реле

Схема защиты электродвигателя при подключении его через магнитный пускатель с катушкой 380В и тепловым реле (нереверсивная схема подключения)

Схема состоит: из QF — автоматического выключателя;KM1 — магнитного пускателя; P — теплового реле; M — асинхронного двигателя; ПР — предохранителя; кнопки управления (С-стоп, Пуск) . Рассмотрим работу схемы в динамике.

Включаем питание QF — автоматическим выключателем, нажимаем кнопку «Пуск» своим нормально разомкнутым контактом подает напряжение на катушку КМ1 — магнитного пускателя. КМ1 – магнитный пускатель срабатывает и своими нормально разомкнутыми, силовыми контактами подает напряжение на двигатель. Для того чтобы не удерживать кнопку «Пуск», чтобы двигатель работал, нужно ее зашунтировать, нормально разомкнутым блок контактом КМ1 – магнитного пускателя.
При срабатывании пускателя блок контакт замыкается и можно отпустить кнопку «Пуск» ток побежит через блок контакт на КМ1 — катушку.
Отключаем двигатель, нажимаем кнопу «С – стоп», нормально замкнутый контакт размыкается и прекращается подача напряжение к КМ1 – катушке, сердечник пускателя под действием пружин возвращается в исходное положение, соответственно контакты возвращаются в нормальное состояние, отключая двигатель. При срабатывании теплового реле — «Р», размыкается нормально замкнутый контакт «Р», отключение происходит аналогично.

Недостатки тепловых реле

Следует отметить и недостатки тепловых реле. Иногда трудно подобрать реле из имеющихся в наличии так, чтобы ток теплового элемента соответствовал току электродвигателя. Кроме того, сами реле требуют защиты от короткого замыкания, поэтому в схемах должны быть предусмотрены предохранители или автоматы. Тепловые реле не способны защитить двигатель от режима холостого хода или недогрузки двигателя, причем иногда даже при обрыве одной из фаз. Поскольку тепловые процессы, происходящие в биметалле, носят достаточно инерционный характер, реле плохо защищает от перегрузок, связанных с быстропеременной нагрузкой на валу электродвигателя.
Если нагрев обмоток обусловлен неисправностью вентилятора (погнуты лопасти или проскальзывание на валу), загрязнением оребренной поверхности двигателя, тепловое реле тоже окажется бессильным, т. к. потребляемый ток не возрастает или возрастает незначительно. В таких случаях, только встроенная тепловая защита способна обнаружить опасное повышение температуры и вовремя отключить двигатель.

Александр Коваль
067-1717147
Статья отредактирована в ноябре 2015 года.

Электродвигатели как переменного, так и постоянного тока нуждаются в защите от короткого замыкания, теплового перегрева и перегрузок, вызванных аварийными ситуациями или неисправностями в технологическом процессе, силовыми установками которых они являются. Для предупреждения подобных ситуаций промышленностью выпускаются несколько видов устройств, которые как отдельно, так и в комплексе с другими средствами, образуют блок защиты электродвигателя.

Способы защиты электродвигателей от перегрузок

Кроме того, в современные схемы обязательно включают элементы, которые предназначены для комплексной защиты электрооборудования в случае исчезновения напряжения одной или нескольких фаз питания. В подобных системах для исключения аварийных ситуации и минимизации ущерба при их возникновении выполняют мероприятия, предусмотренные «Правилами устройства электроустановок» (ПУЭ).

Отключение двигателя по току тепловым реле

Для исключения выхода из строя асинхронных электродвигателей, которые применяются в механизмах, машинах и прочем оборудовании, где возможно увеличение нагрузок на механическую часть двигателя в случае нарушения технологического процесса, применяют устройства защиты от тепловых перегрузок. Схема защиты от тепловых перегрузок, которая изображена на рисунке выше, включает в себя тепловое реле для электродвигателя, являющееся основным прибором, реализующим мгновенное или заданное по времени прерывание цепи питания.

Реле электродвигателя конструктивно состоит из регулируемого или заданного точно механизма задания времени, контакторов и электромагнитной катушки и теплового элемента, являющегося датчиком возникновения критических параметров. Устройства, кроме времени срабатывания, могут регулироваться по величине перегрузки, что расширяет возможности применения, особенно для тех механизмов, в которых согласно технологическому процессу возможно кратковременное увеличение нагрузки на механическую часть электродвигателя.
К недостаткам работы тепловых реле относится функция по возврату к готовности, которая реализована автоматическим самовозвратом или ручном управлении, и не дающая уверенности оператору в несанкционированном пуске электроустановки после срабатывания.

Схема пуска двигателя выполняется при помощи кнопок пуск, стоп и электромагнитного пускателя, питанием катушки которого они управляют, изображена на рисунке. Запуск реализуется контактами пускателя, которые замыкаются при подаче напряжения на катушку магнитного пускателя.

В данной схеме реализована токовая защита электродвигателя, эту функцию осуществляет тепловое реле, отключающее один из выводов обмотки от земли при превышении номинального тока, протекающего по всем, двум или какой то одной фазе питания. Защитное реле отключит нагрузку и при возникновении короткого замыкания в силовых цепях на электрический двигатель. Работает тепловой защитный аппарат по принципу механического размыкания контрольных клемм вследствие нагрева соответствующих элементов.

Есть и другие устройства, предназначенные для отключения электродвигателя, в случае возникновения в силовых линиях и цепях управления токов короткого замыкания. Они бывают нескольких типов, каждый из которых производит практически мгновенное действие по разрыву без временной паузы. К такой аппаратуре относятся предохранители, электрические , а также электромагнитные реле.

Использование специальных электронных устройств

Существуют сложные средства защиты электродвигателей, которые применяются опытными инженерами при проектировании электрических систем и предназначенные для одновременного противодействия аварийным ситуациям, таким как несанкционированный , работа на двух фазах, работа при пониженном или повышенном напряжении, короткое замыкание однофазное электрической цепи на землю в системах с изолированной нейтралью.

К ним относятся:

  • частотные инверторы,
  • устройства плавного пуска,
  • бесконтактные устройства.

Использование частотных преобразователей

Схема защиты электродвигателя, реализованная в составе преобразователя частоты изображенная на рисунке ниже, предусматривает аппаратными возможностями устройства противодействовать выходу из строя электродвигателя за счет автоматического снижения величины тока при пуске, остановке, коротких замыканиях. Кроме того, защита электродвигателя частотником возможна программированием отдельных функций, таких как время срабатывания тепловой защиты, которая активизируется от контроллера температуры двигателя.

Частотный преобразователь в составе своих функций также имеет контроль защиты радиатора и корректировку по высокому и низкому напряжению, которое может быть вызвано в сетях сторонними причинами.

К особенностям контролирования процесса эксплуатации электродвигателей в системе с частотными преобразователями относятся возможности дистанционного управления с персонального компьютера, который подключается по стандартному протоколу, и передача сигналов на вспомогательные контроллеры, обрабатывающие общие сигналы технологического процесса. Узнать больше о функциях частотных преобразователей можно из статьи про .

Устройства плавного пуска и СиЭЗ

С удешевлением устройств, в которых применены новейшие полупроводниковые элементы, становится целесообразно использовать для защиты асинхронных электродвигателей приборы плавного пуска и системы бесконтактной защиты.

Одним из самых распространенных способов защиты трехфазных электродвигателей как короткозамкнутых, так и с фазным ротором, являются системы электронной бесконтактной защиты (СиЭЗ). Функциональная схема, на которой показан пример реализации устройства защиты двигателей СиЭЗ, приведена ниже.

СиЭЗ осуществляет защиту электродвигателей при обрыве любого фазного провода, увеличении тока сверх номинального, механическом заклинивании якоря (ротора) и недопустимой асимметрии по напряжению между фазами. Реализация функций возможна при использовании в схеме шунтов и трансформаторов тока L1, L2 и L3.

Кроме того, системы могут включать дополнительные опции, такие как предпусковой контроль сопротивления изоляции, дистанционные датчики температуры и защиту от понижения тока ниже номинального.

Преимущества СиЭЗ пред частотными преобразователями является непосредственное снятие данных через индукционные датчики, что исключает запаздывание срабатывания, а также сравнительно низкая стоимость при условии, что приборы имеют защитное предназначение.