» »

Как самолёты защищают от обледенения? Как и зачем поливают самолеты зимой

29.09.2019

Зима в этом году началась сурово - сначала подморозило, а теперь заваливает снегом. Условия - в самый раз для того, чтобы посмотреть как происходит деайсинг. После всех согласований для съёмки выбрали 10 число, поэтому после открытия перехода на Белорусской я, с пятиминутным заездом домой, помчался на Павелецкий вокзал.

О том, что я увидел в Домодедово и о том, как происходит процедура деайсинга - смотрите в этом репортаже.

Спасибо пресс-службе аэропорта «Домодедово» за организацию этой съёмки.


Снегоочистительная техника работает круглосуточно. Жутковатые агрегаты с огромными ковшами и щётками сметают снег с рулёжных дорожек на лётном поле, а взлётные полосы поливаются реагентами.
(по клику - 1600x730)

Если говорить техническим языком, то деайсинг (или, по-нашему, противообледенительная обработка воздушного судна) - это процедура очистки аэродинамических поверхностей от налипшего снега и образовавшегося инея и покрытие их защитным составом.

Если по-простому - «поливают самолёт всякой гадостью».

О том, что бывает, если обработку не провести или провести неправильно - можно посмотреть вот в этой замечательной документалке . Можно ещё вспомнить крушение Як-40 , в котором погиб Артём Боровик.

Попытаюсь объяснить популярно. Крылья и хвостовое оперение самолёта - особо сконструированные поверхности, форма которых идеально расчитана, чтобы обеспечивать полёт (за счёт разницы давления над и под поверхностью). Если образуется наледь или прилипает снег - форма меняется, аэродинамика ухудшается и самолёт уже не может «держаться за воздух» - появляется тенденция к сваливанию. Проще говоря, самолёт начинает падать.

Какие ещё неприятности могут случиться - попадание наледи с крыльев в двигатели, или, например, залепленные снегом датчики, считывающие скорость движения, которые в результате дают неверную/противоречивую информацию пилотам.

Всё это особо критично при взлёте и наборе высоты, поэтому основная часть сопутствующих лётных происшествий связана именно с этим этапом полёта.

Процедуру проводят, разумеется, не у самого трапа - там мало места, море аэродромной техники и люди ходят. Поэтому сначала производится посадка пассажиров на борт, и после этого начинается руление к открытой стоянке, где и будет проходить деайсинг.

Защитное покрытие действует около 15 минут, поэтому место выбирают так, чтобы после обработки не надо было далеко рулить до взлётки (например, если терминал в другом конце лётного поля).

Насколько я понял из своих наблюдений, иностранцы предпочитают поливать весь самолёт целиком, включая фюзеляж, а наши в основном ограничиваются аэродинамическими поверхностями.
(по клику - 1600x805)

Деайсинг - одна из самых зрелищных процедур в авиации, особенно если речь идёт о лайнере-гиганте вроде этого Боинга-777 Сингапурских авиалиний.

Многие (как и я) будут наверное удивлены, узнав, что жидкостей на самом деле две: первой под большим напором смывают снег и наледь, а потом уже второй наносят защитное покрытие.

Если очищающая жидкость имеет еле заметный розоватый оттенок, то защитная - явный бирюзовый цвет, который превращает белые самолёты в подобие «огурцов» S 7 .

Кстати, о них. Второй самолёт, на примере которого мы будем смотреть обработку - сибирский Аэробус А319. Посадка закончена, трап сложен и начинается руление к открытой площадке.

Приезжает машина с жидкостью, оператор садится в люльку и разворачивает шланг на телескопической «ноге».

Современные жидкости.

Жидкости ТИП I - незагущенные маловязкие жидкости, что с одной стороны позволяет более эффективно их использовать для удаления обледенения с возможностью разбавления водой в пропорции 10:90 до 90:10, но они имеют небольшое время защитного действия.

Действия жидкости ТИП I достаточно для обработки, запуска двигателей и руления только в условиях образования инея (не более 45 минут). В условиях других видов осадков оно составляет от 5-11 до 2-4 минут, что явно недостаточно для выполнения указанных операций. Соответственно, предварительная обработка ВС только жидкостью ТИП I перед посадкой пассажиров, даже в условиях образования инея, не обеспечивает защиту ВС.

Концентрация применяемой жидкости в смеси с водой выбирается в зависимости от конкретного типа жидкости, температуры воздуха, выбранной процедуры и имеющихся в аэропорту возможностей.

Имеются жидкости на базе этиленгликоля, пропиленгликоля и диэтиленгликоля. Температура применения и соответственно выбираемая при определенной температуре концентрация будет для каждой конкретной жидкости своя.

При выборе концентрации жидкости для применения при одноступенчатой обработке (одновременно и удаление обледенения, и антиобледенительная защита) или на втором этапе двухступенчатой обработки (антиобледенительная защита) температура замерзания должна быть не менее чем на 10 градусов ниже, чем температура окружающего воздуха. Например, при наружной температуре минус 12 градусов жидкость, применяемая для одноступенчатой обработки, должна замерзать при температуре ниже минус 22 градуса.

При выборе концентрации жидкости для применения на первом этапе двухступенчатой обработки (удаление обледенения) может применяться жидкость в смеси с водой более низкой концентрации с температурой замерзания не более чем на три градуса выше температуры окружающего воздуха.

Кроме того, температура применения жидкости не может быть ниже, чем температура, при которой проверена аэродинамическая пригодность жидкости при специальном тесте.

Тест проводится отдельно для "реактивных" ВС со скоростью отрыва передней стойки более 157 км/час (85 узлов) и для "винтовых" ВС со скоростью отрыва передней стойки менее 157 км/час (85 узлов).

Для того чтобы можно было пользоваться таблицами времени защитного действия, температура применяемой смеси ПОЖ ТИП I с водой должна быть не менее 60 градусов, а использованное количество - не менее одного литра на один квадратный метр поверхности ВС.

Жидкости ТИП II и ТИП IV имеют в своем составе, кроме пропиленгликоля, поверхностно активных веществ и антикоррозийных и других присадок, загуститель, который обеспечивает большее время защитного действия и особые аэродинамические качества жидкости, позволяющие освободить поверхность ВС от жидкости во время разбега до отрыва передней стойки. Данные жидкости могут использоваться в концентрации только 25: 75; 50: 50; 75: 25 и 100 %. При этом концентрации 75: 25 и 100 % могут использоваться только для реактивных ВС со скоростью отрыва передней стойки более 157 км/час (85 узлов). Максимальное время защитного действия достигается при использовании для антиобледенительной защиты ВС концентрированной не нагретой жидкости ТИП IV.

Жидкости ТИП II, а тем более ТИП IV обеспечивают значительно большее время защитного действия.

В условиях образования инея оно составляет до 12 часов, что позволяет ее использовать при таких погодных условиях для обработки ВС до посадки пассажиров. В условиях других видов реальных осадков, в зависимости от температуры наружного воздуха и концентрации, оно может составлять от 20-40 минут до 1-1, 5 часа, что должно быть практически достаточно для обеспечения безопасности взлета в большинстве случаев. Для ВС с большой площадью обрабатываемой поверхности в условиях интенсивных осадков и большого времени руления от площадки обработки до исполнительного старта может быть необходимо использование сразу двух или даже трех деайсеров.

Горячую воду с температурой не менее 60 градусов можно использовать только для удаления обледенения (на первом этапе двухступенчатой обработки) только при температуре воздуха минус 3 градуса и выше. Применение воды при более низких температурах недопустимо. Использование для противообледенительной обработки только воды также недопустимо.

Сколько ступеней надо?

При проведении одноступенчатой обработки горячей (температура на форсунке машины не менее 60 градусов) смесью жидкости с водой производится удаление обледенения, а оставшаяся жидкость защищает поверхность от последующего образования снежно-ледяных отложений. Преимуществом такой процедуры является простота и быстрота выполнения. Но одноэтапная процедура приводит к большему расходу жидкости при большом количестве снежно-ледяных отложений на поверхностях ВС и не обеспечивает большого времени защитного действия. Данная процедура эффективна в случае отсутствия осадков и незначительного количества снежно-ледяных отложений на критических поверхностях ВС.

Двухступенчатая обработка проводится в два этапа. На первом этапе удаляется обледенение, а на втором производится антиобледенительная защита. На первом этапе может применяться горячая смесь жидкости с водой более низкой концентрации, что экономит жидкость и в ряде случаев повышается эффективность процедуры за счет более высокой температуры применяемой жидкости. Вода также может применяться до температуры минус 3 градуса. На втором этапе производится защита поверхностей ВС более концентрированной смесью жидкости ТИП I, ТИП II или ТИП IV в зависимости от необходимого при данных погодных условиях времени защитного действия и имеющихся технологий. Двухступенчатая процедура целесообразна в случае потребности большего времени защитного действия и/или большого скопления снежно-ледяных отложений на поверхности ВС.

Контрольная проверка после противообледенительной обработки и код обработки.

После окончания противообледенительной обработки подготовленным техническим персоналом необходимо произвести проверку ВС после удаления с него обледенения и проведения антиообледенительной защиты. Формально это разные проверки. Первая подтверждает чистоту критических поверхностей от снежно-ледяных отложений, а вторая - полноту и правильность нанесения жидкости для антиобледенительной защиты. Однако, как правило, на практике они проводятся одновременно.

Особое смысловое значение имеет передаваемый экипажу код антиобледенительной обработки (или, так называемый, ISO код). Код включает в себя информацию о типе примененной жидкости, ее концентрацию (для ПОЖ ТИП I информация о концентрации может не передаваться), местное время начала последнего этапа обработки и дату. Факт передачи кода, кроме информации о проведенной антиобледенительной обработке, означает, что проверки после удаления обледенения и выполнения антиобледенительной защиты ВС выполнены и на критических поверхностях снежно-ледяных отложений нет.

В связи с тем, что практическое время защитного действия может отличаться как в большую, так и в меньшую стороны, состояние видимых поверхностей ВС должно быть визуально дополнительно проверено экипажем перед взлетом.

В случае сомнения в отсутствии образования снежно-ледяных отложений на поверхности ВС противообледенительная обработка должна быть произведена повторно.

Экономия в обработке

Противообледенительная обработка стоит дорого, но это требование безопасности полетов, поэтому обсуждению подлежит вопрос, не как избежать обработки, а как ее выполнить, обеспечив безопасность взлета, не израсходовав лишнюю жидкость и деньги. Случаи неправильного, неграмотного или нерационального заказа обработки ВС имеют место регулярно. Например, не зная типа применяемой в аэропорту ПОЖ, экипажи разных, в том числе и весьма уважаемых иностранных авиакомпаний, периодически заказывают завышенную концентрацию ПОЖ ТИП I, что ни к чему, кроме завышенных трат, не приводит. Концентрацию ниже допустимого при данных условиях предела тоже иногда заказывают, но такие заказы прямо угрожают безопасности полетов и поэтому просто не выполняются операторами.

Наиболее типичный пример - это заказ обработки жидкостью ТИП I с заведомо более высоким содержанием гликоля. Даже "обученные" пилоты иностранных авиакомпаний периодически заказывают обработку смесью 50: 50 при температуре, когда можно применять смесь 40: 60 или 25: 75. Заказывать процедуру противообледенительной обработки ВС нужно исходя из типов жидкости и процедур, применяемых в аэропорту. Если в российском или иностранном аэропорту применяется только жидкость ТИП II или ТИП IV в разбавленном и концентрированном виде, то исходя из наружной температуры по таблицам применения жидкости ТИП II и ТИП IV определяется минимальная концентрация жидкости для удаления обледенения, например при температуре от минус 3°С до минус 14°С при одноэтапной процедуре может применяться смесь ПОЖ ТИП II или ТИП IV с водой в концентрации не ниже 75: 25, что в условиях снегопада обеспечивает время защитного действия для ТИП II 15-25 минут, для ТИП IV 20-35 минут, а по таблице времени защитного действия производителя OCTAGON MAXFLIGHT составляет 20-50 минут.

Если в аэропорту применяют жидкость ТИП IV в неразбавленном не нагретом виде, что позволяет обеспечить максимальное время защитного действия, так и жидкость ТИП I в смеси с водой, то возможностей для выбора оптимального режима обработки больше. В условиях отсутствия осадков может быть применена одноступенчатая обработка жидкостью ТИП I, либо ее смесь с водой более низкой концентрации может быть использована на первом этапе двухэтапной обработки перед использованием на втором этапе смеси ПОЖ ТИП I более высокой концентрации либо ПОЖ ТИП IV. Использование ПОЖ ТИП I на первом этапе крайне необходимо еще по той причине, что это уменьшает возможность образования на ВС сухого остатка загущенных жидкостей с последующей возможностью гелеобразования. По этой причине аэропорты Европы сейчас переходят на обязательное использование ПОЖ ТИП I.

Еще один пример, который наглядно показывает, что при наличии обильного количества снежно-ледяных отложений на поверхностях ВС более рационально применять двухступенчатую обработку. После сильного снегопада при положительной температуре наружного воздуха готовились к вылету два заснеженных Ил-86. Один самолет был обработан тремя деайсерами в один этап смесью ПОЖ ТИП I с водой в концентрации 25: 75, в результате чего было израсходовано 1975 литров жидкости ТИП I и 5, 5 тонны воды. К обработке другого Ил-86 подошли более рационально и провели тоже тремя деайсерами двухэтапную обработку, применив на первом этапе горячую воду, а на втором смесь жидкости ТИП I с водой в концентрации 25: 75, израсходовав при этом около 7 тонн воды, но при этом всего 134 литра жидкости ТИП I. Стоимость сэкономленного 1841 литра жидкости OCTAFLOEG считается специалистами достаточно легко, но самое важное то, что в данном случае экономия получена только за счет грамотного применения знаний без какого-либо ущерба для безопасности взлета ВС.

Серьезная опасность может возникнуть в случае, если после предварительного этапа обработки экипаж, не видя на поверхности ВС обледенения, экономя деньги и не понимая серьезности ситуации, откажется от основного этапа обработки ВС перед вылетом

Заменят ли супергидрофобные жидкости «незамерзайку», что эффективнее с точки зрения экономики и ученых РАН и как защищают самолеты в российских аэропортах - в материале сайт.

Группа исследователей из Института физической химии и электрохимии РАН (ИФХЭ РАН) разработала серию так называемых супергидрофобных покрытий, использование которых может существенно повысить эффективность защиты металлических и пластмассовых конструкций от обледенения. По словам авторов разработки, покрытие позволит существенно сократить затраты на антиобледенительные жидкости. Также оно сохраняет защитные свойства в течение нескольких полетов, утверждают ученые.

Формирование и накопление льда нарушает работу и снижает эффективность кораблей, морских нефтяных платформ, ветровых турбин, плотин, электростанций, линий электропередач, телекоммуникационного оборудования и т. п. При этом ущерб, наносимый экономике при таких явлениях, как ледяной дождь и снежные бури, составляет десятки миллиардов рублей.

Авиакатастрофы

Обледенение летательных аппаратов в авиации приводит не только к экономическим потерям, но и к гибели десятков и сотен людей. В декабре 1971 года в нескольких километрах от аэропорта в Саратове упал самолет Ан-24. Лайнер заходил на посадку в сложных метеорологических условиях. Причиной катастрофы стало отключение антиобледенительной системы, повлекшее за собой обледенение самолета в облаках. Погибли 57 человек.

Осенью 1978 года тот же Ан-24 потерпел катастрофу и затонул в заливе Сиваш. Полет проходил ночью в облаках и в условиях обледенения. Погибли 26 человек.

В ноябре 1991 года из-за обледенения катастрофа произошла в аэропорту Бугульмы. Экипаж Ан-24 не включил противообледенительную систему. Крылья и стабилизаторы покрылись 1,5 сантиметрами льда. При попытке уйти на второй круг самолет рухнул на землю. 4 члена экипажа и 37 пассажиров погибли.

В апреле 2012 года под Тюменью потерпел крушение авиалайнер ATR 72. В результате катастрофы погибли 43 человека. Из заключения Межгосударственного авиационного комитета (МАК) следовало, что на поверхности самолета были снежно-ледяные отложения. Именно они привели к ухудшению аэродинамических характеристик самолета. Согласно заключению экспертов, проведение противообледенительной обработки позволило бы избежать катастрофы.

Фотография потерпевшего крушение авиалайнера ATR 72

Противообледенительные жидкости

После авиакатастрофы в Тюмени российские авиаперевозчики стали использовать «Концепцию чистого самолета» (clean aircraft concept). Концепция запрещает начинать полет, если на корпусе самолета присутствует иней, снег или лед. При этом однозначного и исчерпывающего перечня условий, при которых нужно проводить обработку, не существует.

«Общим правилом является запрет на взлет самолета, если на его критических поверхностях (крыло, киль, стабилизатор, фюзеляж, включая приемники полного и статического давления, датчики температуры и угла атаки, двигателях, шасси) присутствуют недопустимые производителем самолета снежно-ледяные отложения в виде снега, льда, инея или слякоти», - рассказали корреспонденту сайт в пресс-службе международного аэропорта «Домодедово».

Нужно ли проводить обработку и защиту от наземного обледенения, определяется в результате проверки до взлета самолета. Также учитывается наличие или возможное выпадение замерзающих осадков (снег, перехолажденный дождь, дождь, морозь, туман). При этом противообледенительная обработка может проводиться даже при плюсовой температуре на земле. «Ситуация может быть значительно сложнее, и, например, при больших остатках холодного топлива в баках крыла после предыдущего полета, обработка крыла может потребоваться даже при температуре воздуха +15 градусов», - уточнили в «Домодедово».

Сегодня существует четыре типа противообледенительных жидкостей (ПОЖ). Они представляют собой смесь воды и гликоля (класс органических соединений, содержащих две гидроксильные группы, - прим. сайт) с добавлением различных загустителей.

Тип I применяют для удаления льда. Для экономии его могут разбавлять водой, при этом он практически не защищает, поскольку в жидкости нет загустителей.

В состав типа II входят загустители, которые защищают от обледенения, но действуют в течение небольшого срока.

В тип III добавляют меньше загустителей. Он используется для турбовинтовых самолетов с низкой скоростью отрыва при взлете.

Тип IV имеет высокую концентрацию загустителей и длительный защитный эффект.

Жидкости окрашивают в разные цвета, чтобы их было проще отличать друг от друга. Тип I имеет красноватый оттенок, Тип II - жемчужный, Тип III и Тип IV - желтый и зеленый цвета соответственно.

Цены на жидкости устанавливает аэропорт. Например, в международном аэропорту в Казани противообледенительные жидкости стоят около 200 рублей за литр (в зависимости от типа и концентрации). Для обработки самолета A320 требуется 200-300 литров. Для авиалайнеров количество противообледенительной жидкости составляет около 2000 литров. «К следующему сезону аэропорту предстоит переход на новую, уже разработанную и сертифицированную жидкость четвертого типа на базе этиленгликоля и лучшими характеристиками как по времени защитного действия, так и по минимальной температуре применения. Сейчас ПОЖ такого типа изготавливается на основе пропиленгликоля, производство которого ограничено в России. Кроме того, жизненный цикл жидкости четвертого типа Clariant Max Flight 04 (применяется для противообледенительной обработки в аэропорту «Домодедово», - прим. сайт) , выпуск которой был начат в 2004 году, уже заканчивается», - рассказали сайт в пресс-службе аэропорта «Домодедово».

Супергидрофобные жидкости

Использование противообледенительных жидкостей экономически невыгодно, поскольку такие жидкости можно применять только один раз, считает доктор химических наук, заведующий кафедрой химической термодинамики и кинетики Санкт-Петербургского государственного университета Александр Тойкка. Альтернативой могут стать, например, гидрофобные и супергидрофобные покрытия.

Супергидрофобностью называют особое состояние поверхности, которая взаимодействует с водой в гетерогенном (неоднородном) режиме смачивания. Проще говоря, супергидрофобность - это такой режим, когда капля касается поверхности только в избранных точках. Она не проникает во впадины рельефов, а лишь опирается на вершины выступов, а в основной части нависает над поверхностью, и здесь между жидкостью и твердым материалом существует довольно толстая воздушная прослойка. Благодаря гетерогенному режиму смачивания супергидрофобные покрытия защищают материалы от коррозии, обеспечивают теплозащиту, могут также применяться для электроизоляции.

Разработка супергидрофобных поверхностей - достаточно популярное направление среди исследователей, так как сделать поверхность супергидрофобной можно только с помощью нанотехнологий, поскольку сама природа супергидрофобности требует многомодальной (мультимасштабной) шероховатости. А нанотехнологии - это место, куда в последние годы активно идут инвестиции.

Правда, у этой популярности есть и оборотная сторона: среди занимающихся супергидрофобностью ученых много таких, которые были просто неподготовлены к тем исследованиям, на которые сделали заявку. По словам руководителя исследования, академика РАН Людмилы Бойнович, главного научного сотрудника лаборатории поверхностных сил ИФХЭ РАН, многие зарубежные группы пришли в это направление, не особенно представляя себе тонкостей контакта водных сред с твердой поверхностью, и потому достигли очень скромного успеха. Получаемая ими супергидрофобность (или то, что они принимали за супергидрофобность) держалась считанные секунды, в лучшем случае минуты. И часто возникали проблемы со стойкостью этого режима: стоило прикоснуться к полученной поверхности пальцем, как супергидрофобность исчезала.

Группа Людмилы Бойнович подошла к этим исследованиям, что называется, во всеоружии. Академик Борис Дерягин (1902-1994), основавший лабораторию поверхностных сил, создал на ее основе научную школу, которая получила международное признание.

Несколько лет назад лаборатория, заведующим которой в настоящее время является доктор физико-математических наук Александр Емельяненко, занялась, помимо прочего, исследованиями супергидрофобности, финансируемыми в основном грантом Российского научного фонда и программами Президиума РАН. Ученые провели подробный теоретический анализ явления и разработали ряд способов получения супергидрофобных поверхностей. Одним из самых интересных и перспективных методов, предложенных лабораторией, является так называемое лазерное наносекундное текстурирование. Оно позволяет создать на поверхности тот самый нанорельеф, который обеспечивает на материалах из металла или пластика режим супергидрофобности, причем режим стойкий, выдерживающий не только касание пальцем, а многократные замораживания и размораживания, сопровождающиеся большими напряжениями в зоне контакта поверхности с водой. Работы ученых были опубликованы в журналах Physical Chemistry Chemical Physics, ACS Applied Materials and Interfaces и многих других.

Нам удалось показать, что даже при высокой влажности воздуха капли воды, сидящие на супергидрофобных поверхностях, длительное время находятся в переохлажденном состоянии без кристаллизации при низких температурах. Противообледенительные покрытия, получаемые нами методом наносекундного лазерного текстурирования, имеют высокую износостойкость и хорошо справляются со своей задачей даже при очень масштабных перепадах температур. Нам также удалось показать уникальные противокоррозионные свойства наших поверхностей. И, что, может быть, наиболее важно, мы показали, что нашим методом можно организовать процесс получения супергидрофобной поверхности таким образом, чтобы не только достичь гетерогенного режима смачивания, но и изменить фазовые состояния твердого материала, тем самым повлияв еще на целую гамму других функциональных свойств этой поверхности».

Стоит отметить, что способ лазерного текстурирования, примененный группой ИФХЭ РАН, основан на использовании коммерчески доступных наносекундных лазерных систем и относительно недорог. Он может быть применен при антиобледенительной обработке самолетных крыльев и заменяет обработку антиобледенительными жидкостями (хотя в крайних случаях, в особых форс-мажорных ситуациях, как утверждает Людмила Бойнович, только эффект супергидрофобности может оказаться недостаточным и должен быть дополнен другими стандартными для авиации методами). В отличие от одноразовой обработки антиобледенительными жидкостями, супергидрофобное покрытие работает в течение многих дней без участия человека и приведет к большому экономическому эффекту. «Ключевой вопрос применимости таких покрытий, - комментирует Людмила Бойнович, - связан с тем, насколько создаваемое супергидрофобное состояние долговечно. В последнее время лаборатории удается получать очень стойкие покрытия, которые выдерживают до ста циклов кристаллизации, а также длительные абразивные и кавитационные нагрузки».

Едва ли можно ожидать, что в ближайшем будущем супергидрофобные покрытия заменят традиционные противооблединительные жидкости, считает Александр Тойкка. Это связано со сложностями, с которыми сталкиваются ученые при внедрении своих разработок. «С внедрениями в нашей стране достаточно плохо. Значительно проще купить уже апробированную технологию на западе. Но это тупиковый путь, так как мы попадаем в зависимость. Почему мы сейчас так радуемся санкциям? Потому что у нас есть возможность развития собственных технологий. Разработка должна быть достаточно простой для технологического воплощения и защищена международными патентами. Но все зависит от доброй воли и сознательности производителя. За научно-исследовательской работой последует опытно-конструкторская работа (НИОКР), которая позволит на ограниченном числе образцов проверить жизнеспособность разработки», - отметил эксперт.

Самолёт летает не потому, что в движке шуршит.
А из-за того, что крыло обтекается воздухом.
Форма крыла приводит к тому, что обтекающий его поток создаёт подъёмную силу, действующую на крыло.

Большей частью подъёмная сила - это присасывание крыла верхней поверхностью к проносящемуся над ним воздуху.
Форма крыла, разумеется, рассчитывается так, чтобы по максимуму всосаться вверх. В то время как его обтекают.
То есть подъёмная сила зависит от профиля крыла.

Запомним прикольное и продолжим теорию.

Ещё подъёмная сила увеличивается с увеличением скорости.
А также с увеличением угла атаки (то есть угла между набегающим потоком и хордой крыла - линией от его передней до задней кромки). Увеличивается до определённого момента. После угла атаки, называемого критическим, происходит срыв потока (превращение из ламинарного в турбулентный), и подъёмная сила резко уменьшается.

Теперь, вооружённые передовой теорией, нам не страшно и на самолёт посмотреть.

Осторожно выглянем...
Летний самолёт обычно страха не внушает.

Но у нас за окнами зима и снег при около нуля.
И что же мы видим в таких антисанитарных условиях на крыле?

Ёптапунтакана... - говорит в таких случаях техник и начинает рефлекторно нащупывать клавишу рации, а нащупав, орать в эфир малоразборчивое что-то про облив.
А почему?

Потому что, разумеется, такие красивости форму крыла искажают до неудобообтекаемости.
От искажения потока подъёмная сила уменьшается. Также она может уменьшаться из-за частичной турбулизации потока этими вот замёрзшими осадками.

К чему это приведёт?
"Мы уже полчаса как едем, а оно всё ещё не летит"
Лёдчеги пытаются нос задрать, оно не помогает, так оне и ещё сильнее тянут.

Компенсировать уменьшившуюся п. с. можно или увеличением скорости самолёта на взлёте, или увеличением угла атаки.
В первом случае мы рискуем не уместиться в длину полосы (лёдчег же рассчитал разбег как для нормального самолёта).
Во втором - рискуем вообще потерять всю п. с. из-за наступившего гораздо раньше срыва потока - ведь крыло имеет совсем не расчётный профиль, а вовсе и чёрт-те какой из-за снега и льда.

То есть мы кагбэ понимаем, что нафиг не сдались нам всяческие загрязнения на крыле.
Возникает вопрос - как с этим бороться?

Методы есть разные - заразные и несуразные.
Можно, например, почистить крыло щётками и швабрами.
Или метлой .
В условиях, когда народу много, а работы мало, этот способ вполне себе катит.
Армия, например.
Однако у нас, в части массовых перевозок, всё очень наоборот.
Поэтому чаще всего применяется противообледенительная обработка (ПОО) жидкостями на основе этиленгликоля.
Обработка ведётся в один или два этапа.

Первый этап - удаление обледенения (de-icing).
Производится нагретой примерно до +60 градусов Цельсия противообледенительной жидкостью (ПОЖ) типа 1.

Когда пассажиры на местах и трап отогнан, экипаж готовится к обливу.
Закрывается отбор воздуха от ВСУ на кондиционирование салона (чтобы пары жидкости не попадали в салон).
Затем связывается с выпускающим техником и облив начинается.
Обработка, в теории, должна начинаться с левого крыла, затем левая половина стабилизатора, правая половина стабилизатора, и, наконец, правое крыло. Это делается для того, чтобы командир ВС со своей стороны мог видеть крыло, находящееся в самых худших условиях (так как обработка начинается на нём первой, то оно потом дольше остальных поверхностей подвергается воздействию осадков).
Горячей жидкостью снег смывается спереди крыла назад и от его верхней точки вниз (в данном случае от законцовки крыла к фюзеляжу).
Затем машина переезжает дальше, на стабилизатор.


Машины бывают различных конструкций. Такая - из наиболее простых.
Тут оператор в люльке может управлять подъёмом стрелы и её поворотом, а распылительный пистолет направляет вручную. Водитель же медленно везёт клиента в люльке вдоль крыла.

Бывают машины с закрытой кабиной оператора и поворачивающимся управляемым соплом на длинной штанге.

В некоторых зарубежных портах есть стационарные установки на специально построенных обливочных стоянках, где жидкость собирается, очищается и снова используется. В России всё по-простому, по рабоче-крестьянски.

Расход жидкости на этом этапе обработки, в зависимости от условий, может составлять от примерно 150 литров на самолёт (несильный иней на крыле и стабилизаторе) до нескольких тонн (толстый слой мокрого снега и продолжающиеся осадки).
Каждый литр стОит несколько долларов, так что очень подумайте, если хотите создавать свою авиакомпанию
Жидкость может, в зависимости от температуры воздуха, разбавляться водой. Машина сама может смешивать нужную концентрацию и подогревать жидкость.

Если осадков нет, то первым этапом вся развлекуха и заканчивается.
Если же снег всё капает, то мы приходим к необходимости второго этапа обработки - защите от наземного обледенения, или anti-icing.
Он проводится нанесением жидкости типов 2, 3 или 4.
Это - по сути, похожая на тип 1 жидкость, только более вязкая и концентрации 100%.
Такая жидкость принимает на себя снег и не даёт ему прилипать к поверхности ВС.

ПОЖ имеет так называемый критерий аэродинамической пригодности.
Это значит, что она должна быть сдута с поверхностей ВС при разбеге, на скорости до примерно 130-150 км/ч.

Поэтому.
Уважаемые пилоты.
Пожалуйста, не мотивируйте своё желание политься "обледенением в облаках"
В полёте жидкости на ВС уже нет и даже её остатки не участвуют в защите от обледенения.
В полёте действуют только самолётные системы. На земле же вас защищают только от наземного обледенения.

Второй этап обработки происходит обычно на обратном ходе машины - сразу же после обработки первым типом.

По окончании обработки лётчикам сообщаются время начала крайнего этапа обработки, концентрации жидкостей и их типы (1 и, возможно, 2 или 3 или 4). На основании этих данных и в зависимости от погодных условий лётчики по таблицам определяют время защиты от обледенения (Holdover time). Зная время начала крайнего этапа обработки, они могут по пути руления и во время ожидания взлёта ориентироваться, на сколько им хватит этой обработки.
При необходимости, они могут вернуться со старта для повторной обработки.

В завершение - немного нюансов.

1. на нижней поверхности крыла, в районе топливных баков, допускается нарастание инея толщиной до 3 мм. Его можно не удалять.
2. если топливо холодное (например, после долгого полёта), то возможно осаждение влаги из воздуха на верхнюю переохлаждённую поверхность крыла и образование так называемого "топливного льда". Он прозрачен и совершенно неотличим от влаги на поверхности крыла. Обнаружить его можно только голой рукой. Наличие не допускается.
3. обледенение возможно при температуре воздуха обычно от примерно -15 до примерно +15 градусов Цельсия. Это если даже снега нет, за счёт содержащейся в воздухе влаги.
4. что мы будем делать в таком случае:

?
Правильно.
Поливать осторожненько сверху, стараясь не попадать на стёкла прямой струёй.
Также прямой струёй не надо лить на щели проёмов дверей, в воздухозаборники двигателей и ВСУ.
5. на фюзеляже допускается слой инея, позволяющий прочитать логотип компании.

P. S.
1. Если во время ПОО из вентиляции повалили светлые пары, то, возможно, это пока ещё и не пожар, а просто пилоты не согласовали с техниками про облив и те захерачили струю в заборник ВСУ (откуда и пошло в вентиляцию). У неё сладенький такой привкус.
Поэтому насторожитесь, но сразу не выбегайте про пожар.
Немного подождите - "а вдруг ещё полетим?"
2. 3rd Force - Ready or Not.
3. Рекомендации Ассоциации Европейских Авиалиний по предотвращению и удалению обледенения на земле (англ.) .
4. Разумеется, тема уже обсасывалась другими, но у меня же свой взгляд