» »

Решение уравнений с корнями примеры. Уравнения онлайн

11.10.2019

Хотя пугающий вид символа квадратного корня и может заставить съежиться человека, не сильного в математике, задачи с квадратным корнем не такие уж и трудные, как это может вначале показаться. Простые задачи с квадратным корнем довольно часто можно решить так же легко, как обычные задачи с умножением или делением. С другой стороны, более сложные задачи могут потребовать некоторых усилий, но с правильным подходом даже они не составят вам труда. Начните решать задачи с корнем уже сегодня, чтобы научиться этому радикально новому математическому умению!

Шаги

Часть 1

Понимание квадратов чисел и квадратных корней
  1. Возведите число в квадрат, умножив его само на себя. Для того чтобы понять квадратные корни, лучше начать с квадратов чисел. Квадраты чисел довольно просты: возведение числа в квадрат означает умножение его само на себя. Например, 3 в квадрате это то же самое, что и 3 × 3 = 9, а 9 в квадрате это то же самое, что и 9 × 9 = 81. Квадраты помечаются написанием небольшой цифры «2» справа над возводящим в квадрат числом. Пример: 3 2 , 9 2 , 100 2 и так далее.

    • Попробуйте сами возвести в квадрат еще несколько чисел, чтобы опробовать эту концепцию. Помните, возведение числа в квадрат означает, что это число следует умножить само на себя. Это можно сделать даже для отрицательных чисел. В таком случае результат всегда будет положительным. Например: -8 2 = -8 × -8 = 64 .
  2. Когда речь идет о квадратных корнях, то здесь идет обратный процесс возведению в квадрат. Символ корня (√, его также называют радикалом) по существу означает противоположность символа 2 . Когда вы видите радикал, вы должны спросить себя: «Какое число может умножиться само на себя, чтобы получилось число под корнем?». Например, если вы видите √(9), тогда вы должны найти число, которое при возведении в квадрат давало бы число девять. В нашем случае этим числом будет три, потому что 3 2 = 9.

    • Рассмотрим еще один пример и найдем корень из 25 (√(25)). Это означает, что нам необходимо найти число, которое бы в квадрате давало нам 25. Так как 5 2 = 5 × 5 = 25, можно сказать, что √(25) = 5.
    • Вы также может думать об этом, как об «аннулировании» возведения в квадрат. Например, если нам необходимо найти √(64), квадратный корень 64, то давайте думать об этом числе, как о 8 2 . Так как символ корня «отменяет» возведение в квадрат, то мы можем сказать, что √(64) = √(8 2) = 8.
  3. Знайте разницу между идеальным и не идеальным возведением в квадрат. До этих пор ответами на наши задачи с корнем были хорошие и круглые числа, но это не всегда так. Ответами задач с квадратным корнем могут быть очень длинные и неудобные числа с десятичной дробью. Числа, корень которых представляет собой целые числа (другими словами, числа которые не являются дробью) называются полными квадратами. Все вышеупомянутые примеры (9, 25 и 64) являются полными квадратами, потому что их корнем будет целое число (3,5 и 8).

    • С другой стороны, числа, которые при возведении под корень не дают целого числа, называются неполными квадратами. Если поставить одно из этих чисел под корень, то вы получите число с десятичной дробью. Иногда такое число может оказаться весьма длинным. Например, √(13) = 3,605551275464...
  4. Запомните первые 1-12 полных квадратов. Как вы, вероятно, уже заметили, найти корень полного квадрата довольно легко! Из-за того, что эти задачи такие простые, стоит запомнить корни первой дюжины полных квадратов. Вы не раз столкнетесь с этими числами, так что потратьте немного времени, чтобы запомнить их пораньше и сэкономить время в будущем.

    • 1 2 = 1 × 1 = 1
    • 2 2 = 2 × 2 = 4
    • 3 2 = 3 × 3 = 9
    • 4 2 = 4 × 4 = 16
    • 5 2 = 5 × 5 = 25
    • 6 2 = 6 × 6 = 36
    • 7 2 = 7 × 7 = 49
    • 8 2 = 8 × 8 = 64
    • 9 2 = 9 × 9 = 81
    • 10 2 = 10 × 10 = 100
    • 11 2 = 11 × 11 = 121
    • 12 2 = 12 × 12 = 144
  5. Упростите корни, убрав из него полные квадраты, если это возможно. Найти корень неполного квадрата иногда может оказаться нелегко, особенно если вы не используете калькулятор (в разделе ниже вы найдете несколько трюков, как сделать этот процесс легче). Однако зачастую можно упростить число под корнем, чтобы с ним было легче работать. Чтобы сделать это, вам просто необходимо разделить число под корнем на множители, а затем найти корень множителя, который является полным квадратом, и записать его снаружи корня. Это проще, чем кажется. Читайте далее, чтобы получить больше информации.

    • Давайте предположим, что нам необходимо найти квадратный корень 900. На первый взгляд это кажется довольно тяжелой задачей! Однако это не будет так тяжело, если мы разделим число 900 на множители. Множители – это числа, которые умножаются друг на друга для того, чтобы дать новое число. Например, число 6 можно получить, умножив 1 × 6 и 2 × 3, его множителями будут числа 1, 2, 3 и 6.
    • Вместо того чтобы искать корень числа 900, что немного затруднительно, давайте запишем 900, как умножение 9 × 100. Теперь, когда число 9, которое является полным квадратом, отделено от 100, мы можем найти его корень. √(9 × 100) = √(9) × √(100) = 3 × √(100). Другими словами, √(900) = 3√(100).
    • Мы даже можем пойти еще дальше, разделив 100 на два множителя, 25 и 4. √(100) = √(25 × 4) = √(25) × √(4) = 5 × 2 = 10. Поэтому мы можем сказать, что √(900) = 3(10) = 30
  6. Используйте мнимые числа, чтобы найти корень отрицательного числа. Спросите себя, какое число при умножении само на себя даст -16? Это не 4 и не -4, так как возведение этих чисел в квадрат даст нам положительное число 16. Сдались? На самом деле не существует способа записать корень -16 или любого другого отрицательного числа обычными числами. В таком случае мы должны подставить мнимые числа (обычно в форме букв или символов), чтобы они оказались вместо корня отрицательного числа. Например, переменная «i» обычно используется для возведения под корень числа -1. Как правило, корнем отрицательного числа всегда будет мнимое число (или включенное в него).

    • Знайте, что хотя мнимые числа и не могут быть представлены обычными цифрами, к ним все равно можно относиться, как к таковым. Например, квадратный корень отрицательного числа можно возвести в квадрат, чтобы придать этим отрицательным числам, как и любым другим, квадратный корень. Например, i 2 = -1

    Часть 2

    Использование алгоритма деления столбиком
    1. Запишите задачу с корнем, как задачу деления столбиком. Хотя это может отнять довольно много времени, таким образом, вы сможете решить задачу с корнем неполных квадратов, не прибегая к помощи калькулятора. Для этого мы воспользуемся методом решения (или алгоритмом), который похож (но не точно такой же) на обычное деление столбиком.

      • Для начала запишите задачу с корнем в такую же форму, что и при делении столбиком. Предположим, что мы хотим найти квадратный корень числа 6,45, которое точно не является полным квадратом. Сперва мы напишем обычный символ квадрата, а затем под ним мы напишем число. Далее над числом мы нарисуем линию, чтобы оно оказалось в небольшой «коробочке», так же как и при делении столбиком. После этого у нас получится корень с длинным хвостом и числом 6,45 под ним.
      • Над корнем мы будем писать числа, так что обязательно оставьте там место.
    2. Сгруппируйте цифры по парам. Для того чтобы начать решать задачу, необходимо сгруппировать цифры числа под радикалом по парам, начав с точки в десятичной дроби. Если хотите, можете делать небольшие отметки (вроде точек, косой линии, запятых и прочего) между парами, чтобы не запутаться.

      • В нашем примере, мы должны разделить на пары число 6,45 следующим образом: 6-,45-00. Обратите внимание, что слева присутствует «оставшаяся» цифра – это нормально.
    3. Найдите наибольшее число, квадрат которого меньше или равен первой «группе». Начните с первого числа или пары слева. Выберите наибольшее число, квадрат которого меньше или равен оставшейся «группе». Например, если бы группа была равна 37, вы бы выбрали число 6, потому что 6 2 = 36 < 37, а 7 2 = 49 > 37. Запишите это число над первой группой. Это будет первой цифрой вашего ответа.

      • В нашем примере, первой группой в 6-,45-00 будет цифра 6. Наибольшее число, которое в квадрате будет меньше или равно 6 это 2 2 = 4. Напишите цифру 2 над цифрой 6, которая стоит под корнем.
    4. Удвойте только что написанное число, затем опустите его под корень и отнимите. Возьмите первую цифру вашего ответа (число, которое вы только что нашли) и удвойте ее. Запишите результат под первой своей группой и отнимите, чтобы найти разницу. Опустите следующую пару чисел рядом с ответом. И наконец, напишите слева последнюю цифру удвоения первой цифры своего ответа, а рядом оставьте пробел.

      • В нашем примере, мы начнем с удвоения цифры 2, которая является первой цифрой нашего ответа. 2 × 2 = 4. Затем мы отнимем 4 от 6 (нашей первой «группы»), получив при этом 2. Далее мы опустим следующую группу (45), чтобы получить 245. И наконец, слева мы еще раз напишем цифру 4, оставив в конце небольшой пробел, вот так: 4_
    5. Заполните пробел. Затем вы должны прибавить цифру к правой части записанного числа, которое находится слева. Выберите цифру, перемножив которую с вашим новым числом, вы получили бы максимально большой результат, но который бы был меньше или равен «опущенному «числу». Например, если ваше «опущенное» число равно 1700, а ваше число слева это 40_, в пробел необходимо написать цифру 4, так как 404 × 4 = 1616 < 1700, в то время как 405 × 5 = 2025. Найденная в этом шаге цифра и будет второй цифрой вашего ответа, так вы можете записать ее над знаком корня.

      • В нашем примере, мы должны найти число и записать его в пробелы 4_ × _, что сделает ответ как можно большим, но все же меньшим или равным 245. В нашем случае это цифра 5. 45 × 5 = 225, в то время как 46 × 6 = 276
    6. Продолжайте использовать «пустые» числа, чтобы найти ответ. Продолжайте решать это измененное деление столбиком, пока не начнете получать нули при вычитании «опущенного» числа или пока не получите желаемый уровень точности ответа. Когда вы закончите, числа, которые вы использовали, чтобы заполнить пробелы в каждом шаге (плюс самое первое число) будут составлять число вашего ответа.

      • Продолжая наш пример, мы отнимем 225 от 245, чтобы получить 20. Затем, мы опустим следующую пару чисел, 00, чтобы получить 2000. Удвоим число над знаком корня. Мы получим 25 × 2 = 50. Решив пример с пробелами, 50_ × _ =/< 2,000, мы получим 3. На этом этапе над радикалом у нас будет написано 253, а повторив этот процесс снова, следующим нашим числом будет цифра 9.
    7. Передвиньте точку десятичной дроби вперед от изначального «делимого» числа. Чтобы завершить свой ответ, вы должны поставить точку десятичной дроби в правильное место. К счастью, сделать это довольно легко. Все, что вам необходимо сделать, это выровнять ее относительно точки изначального числа. Например, если под корнем будет стоять число 49,8, вы должны будете поставить точку между двумя цифрами над девяткой и восьмеркой.

      • В нашем примере под радикалом стоит число 6,45, так что мы просто переместим точку и поставим ее между цифрами 2 и 5 в нашем ответе, получив при этом ответ равный 2,539.

    Часть 3

    Быстрый подсчет неполных квадратов
    1. Найдите неполные квадраты, подсчитав их. Когда вы запомните полные квадраты, поиск корня неполных квадратов станет намного проще. Так как вы уже знаете дюжину полных квадратов, любое число, которое попадает в область между этими двумя полными квадратами можно найти, сведя все к приблизительному подсчету между этих значений. Начните с поиска двух полных квадратов, между которыми находится ваше число. Затем определите, к которому из этих чисел ваше число находится ближе.

      • Например, предположим, что нам необходимо найти квадратный корень числа 40. Так как мы запомнили полные квадраты, мы можем сказать, что число 40 находится между 6 2 и 7 2 или числам 36 и 49. Так как 40 больше 6 2 , его корень будет больше 6, а так как оно меньше 7 2 , его корень также будет и меньше 7. 40 немного ближе к 36, чем к 49, так что ответ, скорее всего, будет немного ближе к 6. В следующих нескольких шагах мы сузим наш ответ.
      • Следующее, что вы должны сделать, это возвести приблизительное число в квадрат. Вам, скорее всего, не повезет и вы не получите изначальное число. Оно будет или немного большим, или немного меньшим. Если ваш результат слишком большой, тогда попробуйте снова, но с немного меньшим приблизительным числом (и наоборот, если результат слишком низкий).
        • Умножьте 6,4 само на себя, и вы получите 6,4 × 6,4 = 40,96, что немного больше за изначальное число.
        • Так как наш ответ оказался больше, мы должны умножит число на одну десятую меньше за приблизительное и получить следующее: 6,3 × 6,3 = 39,69. Это немного меньше за изначальное число. Это значит, что квадратный корень 40 находится между 6,3 и 6,4. И снова, так как 39,69 ближе к 40, чем 40,96, мы знаем, что квадратный корень будет ближе к 6,3, чем к 6,4.
    2. Продолжайте расчет. На этом этапе, если вы довольны своим ответом, вы можете просто взять первое угаданное приблизительное значение. Однако если вы хотите получить более точный ответ, все что вам необходимо сделать, это выбрать приблизительное значение с двумя знаками десятичной дроби, которое ставит это приблизительное значение между первыми двумя числами. Продолжив этот подсчет, вы сможете получить для своего ответа три, четыре и больше знаков после запятой. Все зависит от того, насколько далеко вы захотите зайти.

      • В нашем примере давайте выберем 6,33 в качестве приблизительного значения с двумя знаками после запятой. Умножьте 6,33 само на себя, чтобы получить 6,33 × 6,33 = 40,0689. так как это немного больше нашего числа, мы возьмем число поменьше, например, 6,32. 6,32 × 6,32 = 39.9424. Этот ответ немного меньше нашего числа, так что мы знаем, что точный квадратный корень находится между 6,32 и 6,33. Если бы мы захотели продолжить, мы бы продолжали использовать тот же подход, чтобы получить ответ, который становился бы все точнее и точнее.
    • Для быстрого поиска решения, воспользуйтесь калькулятором. Большинство современных калькуляторов могут мгновенно найти квадратный корень числа. Все что вам необходимо сделать, это ввести свое число, а затем нажать на кнопку со знаком корня. Например, для того чтобы найти корень 841, вы должны будет нажать 8, 4, 1 и (√). В результате чего вы получите ответ 39.

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Довольно часто в уравнениях встречается знак корня и многие ошибочно считают, что такие уравнения сложные в решении. Для таких уравнений в математике существует специальный термин, которым и именуют уравнения с корнем - иррациональные уравнения.

Главным отличием в решении уравнений с корнем от других уравнений, например, квадратных, логарифмических, линейных, является то, что они не имеют стандартного алгоритма решения. Поэтому чтобы решить иррациональное уравнение необходимо проанализировать исходные данные и выбрать более подходящий вариант решения.

В большинстве случаев для решения данного рода уравнений используют метод возведения обеих частей уравнения в одну и ту же степень

Допустим, дано следующее уравнение:

\[\sqrt{(5x-16)}=x-2\]

Возводим обе части уравнения в квадрат:

\[\sqrt{(5х-16))}^2 =(x-2)^2\], откуда последовательно получаем:

Получив квадратное уравнение, находим его корни:

Ответ: \

Если выполнить подстановку данных значений в уравнение, то получим верное равенство, что говорит о правильности полученных данных.

Где можно решить уравнение с корнями онлайн решателем?

Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Изучая алгебру, школьники сталкиваются с уравнениями многих видов. Среди тех из них, которые наиболее простые, можно назвать линейные, содержащие одну неизвестную. Если переменная в математическом выражении возводится в определенную степень, то уравнение называют квадратным, кубическим, биквадратным и так далее. Указанные выражения могут содержать рациональные числа. Но существуют также уравнения иррациональные. От прочих они отличаются наличием функции, где неизвестное находится под знаком радикала (то есть чисто внешне переменную здесь можно увидеть написанной под квадратным корнем). Решение иррациональных уравнений имеет свои характерные особенности. При вычислении значения переменной для получения правильного ответа их следует обязательно учитывать.

«Невыразимые словами»

Не секрет, что древние математики оперировали в основном рациональными числами. К таковым относятся, как известно, целые, выражаемые через обыкновенные и десятичные периодические дроби представители данного сообщества. Однако ученые Среднего и Ближнего Востока, а также Индии, развивая тригонометрию, астрономию и алгебру, иррациональные уравнения тоже учились решать. К примеру, греки знали подобные величины, но, облекая их в словесную форму, употребляли понятие «алогос», что означало «невыразимые». Несколько позднее европейцы, подражая им, называли подобные числа «глухими». От всех остальных они отличаются тем, что могут быть представлены только в форме бесконечной непериодической дроби, окончательное числовое выражение которой получить просто невозможно. Поэтому чаще подобные представители царства чисел записываются в виде цифр и знаков как некоторое выражение, находящееся под корнем второй или большей степени.

На основании вышесказанного попробуем дать определение иррациональному уравнению. Подобные выражения содержат так называемые «невыразимые числа», записанные с использованием знака квадратного корня. Они могут представлять собой всевозможные довольно сложные варианты, но в своей наипростейшей форме имеют такой вид, как на фото ниже.

Преступая к решению иррациональных уравнений, перво-наперво необходимо вычислить область допустимых значений переменной.

Имеет ли смысл выражение?

Необходимость проверки полученных значений вытекает из свойств Как известно, подобное выражение приемлемо и имеет какой-либо смысл лишь при определенных условиях. В случаях корня четной степени все подкоренные выражения должны быть положительными или равняться нулю. Если данное условие не выполняется, то представленная математическая запись не может считаться осмысленной.

Приведем конкретный пример, как решать иррациональные уравнения (на фото ниже).

В данном случае очевидно, что указанные условия ни при каких значениях, принимаемых искомой величиной, выполняться не могут, так как получается, что 11 ≤ x ≤ 4. А значит, решением может являться только Ø.

Метод анализа

Из вышеописанного становится понятно, как решать иррациональные уравнение некоторых типов. Здесь действенным способом может оказаться простой анализ.

Приведем ряд примеров, которые снова наглядно это продемонстрируют (на фото ниже).

В первом случае при внимательном рассмотрении выражения сразу оказывается предельно ясно, что истинным оно быть не может. Действительно, ведь в левой части равенства должно получаться положительное число, которое никак не способно оказаться равным -1.

Во втором случае сумма двух положительных выражений может считаться равной нулю, лишь только когда х - 3 = 0 и х + 3 = 0 одновременно. А подобное опять невозможно. И значит, в ответе снова следует писать Ø.

Третий пример очень похож на уже рассмотренный ранее. Действительно, ведь здесь условия ОДЗ требуют, чтобы выполнялось следующее абсурдное неравенство: 5 ≤ х ≤ 2. А подобное уравнение аналогичным образом никак не может иметь здравых решений.

Неограниченное приближение

Природа иррационального наиболее ясно и полно может быть объяснена и познана только через нескончаемый ряд чисел десятичной дроби. А конкретным, ярким примером из членов этого семейства является πи. Не без оснований предполагается, что эта математическая константа была известна с древних времен, используясь при вычислении длин окружности и площади круга. Но среди европейцев ее впервые применили на практике англичанин Уильям Джонс и швейцарец Леонард Эйлер.

Возникает эта константа следующим образом. Если сравнивать самые разные по длине окружности, то отношение их длин и диаметров в обязательном порядке равны одному и тому же числу. Это и есть πи. Если выразить его через обыкновенную дробь, то приблизительно получим 22/7. Впервые это сделал великий Архимед, портрет которого представлен на рисунке выше. Именно поэтому подобное число получило его имя. Но это не явное, а приближенное значение едва ли не самого удивительного из чисел. Гениальный ученый с точностью до 0,02 нашел искомую величину, но, по сути, данная константа не имеет реального значения, а выражается как 3,1415926535… Она представляет собой бесконечный ряд цифр, неограниченно приближаясь к некоему мифическому значению.

Возведение в квадрат

Но вернемся к иррациональным уравнениям. Чтобы отыскать неизвестное, в данном случае очень часто прибегают к простому методу: возводят обе части имеющегося равенства в квадрат. Подобный способ обычно дает хорошие результаты. Но следует учитывать коварство иррациональных величин. Все полученные в результате этого корни необходимо проверять, ведь они могут не подойти.

Но продолжим рассмотрение примеров и постараемся найти переменные вновь предложенным способом.

Совсем несложно, применив теорему Виета, найти искомые значения величин после того, как в результате определенных оперций у нас образовалось квадратное уравнение. Здесь получается, что среди корней будут 2 и -19. Однако при проверке, подставив полученные значение в изначальное выражение, можно убедиться, что ни один из этих корней не подходит. Это частое явление в иррациональных уравнениях. Значит, наша дилемма вновь не имеет решений, а в ответе следует указать пустое множество.

Примеры посложней

В некоторых случаях требуется возводить в квадрат обе части выражения не один, а несколько раз. Рассмотрим примеры, где требуется указанное. Их можно увидеть ниже.

Получив корни, не забываем их проверять, ведь могут возникнуть лишние. Следует пояснить, почему такое возможно. При применении подобного метода происходит в некотором роде рационализация уравнения. Но избавляясь от неугодных нам корней, которые мешают производить арифметические действия, мы как бы расширяем существующую область значений, что чревато (как можно понять) последствиями. Предвидя подобное, мы и производим проверку. В данном случае есть шанс убедиться, что подходит только один из корней: х = 0.

Системы

Что же делать в случаях, когда требуется осуществить решение систем иррациональных уравнений, и у нас в наличии не одно, а целых два неизвестных? Здесь поступаем так же, как в обычных случаях, но с учетом вышеперечисленных свойств данных математических выражений. И в каждой новой задаче, разумеется, следует применять творческий подход. Но, опять же, лучше рассмотреть все на конкретном примере, представленном ниже. Здесь не просто требуется найти переменные х и у, но и указать в ответе их сумму. Итак, имеется система, содержащая иррациональные величины (см. фото ниже).

Как можно убедиться, подобная задача не представляет ничего сверхъестественно сложного. Требуется лишь проявить сообразительность и догадаться, что левая часть первого уравнения представляет собой квадрат суммы. Подобные задания встречаются в ЕГЭ.

Иррациональное в математике

Каждый раз потребность в создании новых видов чисел возникала у человечества тогда, когда ему не хватало «простора» для решения каких-то уравнений. Иррациональные числа не являются исключением. Как свидетельствуют факты из истории, впервые великие мудрецы обратили на это внимание еще до нашей эры, веке в VII. Сделал это математик из Индии, известный под именем Манава. Он отчетливо понимал, что из некоторых натуральных чисел невозможно извлечь корень. К примеру, к таковым относятся 2; 17 или 61, а также многие другие.

Один из пифагорейцев, мыслитель по имени Гиппас, пришел к тому же выводу, пытаясь производить вычисления с числовыми выражениями сторон пентаграммы. Открыв математические элементы, которые не могут быть выражены цифровыми значениями и не обладают свойствами обычных чисел, он настолько разозлил своих коллег, что был выброшен за борт корабля, в море. Дело в том, что другие пифагорейцы сочли его рассуждения бунтом против законов вселенной.

Знак радикала: эволюция

Знак корня для выражения числового значения «глухих» чисел стал использоваться при решении иррациональных неравенств и уравнений далеко не сразу. Впервые о радикале начали задумываться европейские, в частности итальянские, математики приблизительно в XIII веке. Тогда же для обозначения придумали задействовать латинскую R. Но немецкие математики в своих работах поступали иначе. Им больше понравилась буква V. В германии вскоре распространилось обозначение V(2), V(3), что призвано было выражать корень квадратный из 2, 3 и так далее. Позднее в дело вмешались нидерландцы и видоизменили знак радикала. А завершил эволюцию Рене Декарт, доведя знак квадратного корня до современного совершенства.

Избавление от иррационального

Иррациональные уравнения и неравенства могут включать в себя переменную не только под знаком квадратного корня. Он может быть любой степени. Самым распространенным способом от него избавиться является возможность возвести обе части равенства в соответствующую степень. Это основное действие, помогающее при операциях с иррациональным. Действия в четных случаях особенно не отличаются от тех, которые были уже разобраны нами ранее. Здесь должны быть учтены условия неотрицательности подкоренного выражения, а также по окончании решения необходимо производить отсев посторонних значений переменных таким образом, как было показано в рассмотренных уже примерах.

Из дополнительных преобразований, помогающих найти правильный ответ, часто используется умножение выражения на сопряженное, а также нередко требуется введение новой переменной, что облегчает решение. В некоторых случаях, чтобы отыскать значение неизвестных, целесообразно применять графики.

Уравнения, в которых под знаком корня содержится переменная, называт иррациональными.

Методы решения иррациональных уравнений, как правило, основаны на возможности замены (с помощью некоторых преобразований) иррационального уравнения рациональным уравнением, которое либо эквивалентно исходному иррациональному уравнению, либо является его следствием. Чаще всего обе части уравнения возводят в одну и ту же степень. При этом получается уравнение, являющееся следствием исходного.

При решении иррациональных уравнений необходимо учитывать следующее:

1) если показатель корня - четное число, то подкоренное выражение должно быть неотрицательно; при этом значение корня также является неотрицательным (опредедение корня с четным показателем степени);

2) если показатель корня - нечетное число, то подкоренное выражение может быть любым действительным числом; в этом случае знак корня совпадает со знаком подкоренного выражения.

Пример 1. Решить уравнение

Возведем обе части уравнения в квадрат.
x 2 - 3 = 1;
Перенесем -3 из левой части уравнения в правую и выполним приведение подобных слагаемых.
x 2 = 4;
Полученное неполное квадратное уравнение имеет два корня -2 и 2.

Произведем проверку полученных корней, для этого произведем подстановку значений переменной x в исходное уравнение.
Проверка.
При x 1 = -2 - истинно:
При x 2 = -2- истинно.
Отсюда следует, что исходное иррациональное уравнение имеет два корня -2 и 2.

Пример 2. Решить уравнение.

Это уравнение можно решить по такой же методике как и в первом примере, но мы поступим иначе.

Найдем ОДЗ данного уравнения. Из определения квадратного корня следует, что в данном уравнении одновременно должны выполнятся два условия:

ОДЗ данного уранения: x.

Ответ: корней нет.

Пример 3. Решить уравнение=+ 2.

Нахождение ОДЗ в этом уравнении представляет собой достаточно трудную задачу. Возведем обе части уравнения в квадрат:
x 3 + 4x - 1 - 8= x 3 - 1 + 4+ 4x;
=0;
x 1 =1; x 2 =0.
Произведя проверку устанавливаем, что x 2 =0 лишний корень.
Ответ: x 1 =1.

Пример 4. Решить уравнение x =.

В этом примере ОДЗ найти легко. ОДЗ этого уравнения: x[-1;).

Возведем обе части этого уравнения в квадрат, в результате получим уравнение x 2 = x + 1. Корни этого уравнения:

Произвести проверку найденных корней трудно. Но, несмотря на то, что оба корня принадлежат ОДЗ утверждать, что оба корня являются корнями исходного уравнения нельзя. Это приведет к ошибке. В данном случае иррациональное уравнение равносильно совокупности двух неравенств и одного уравнения:

x + 10 и x0 и x 2 = x + 1, из которой следует, что отрицательный корень для иррационального уравнения является посторонним и его нужно отбросить.

Пример 5 . Решить уравнение+= 7.

Возведем обе части уравнения в квадрат и выполним приведение подобных членов, перенес слагаемых из одной части равенства в другую и умножение обеих частей на 0,5. В результате мы получим уравнение
= 12, (*) являющееся следствием исходного. Снова возведем обе части уравнения в квадрат. Получим уравнение (х + 5)(20 - х) = 144, являющееся следствием исходного. Полученное уравнение приводится к виду x 2 - 15x + 44 =0.

Это уравнение (также являющееся следствием исходного) имеет корни x 1 = 4, х 2 = 11. Оба корня, как показывает проверка, удовлетворяют исходному уравнению.

Отв. х 1 = 4, х 2 = 11.

Замечание . При возведении уравнений в квадрат учащиеся нередко в уравнениях типа (*) производят перемножение подкоренных выражений, т. е. вместо уравнения = 12, пишут уравнение = 12. Это не приводит к ошибкам, поскольку уравнения являются следствиями уравнений. Следует, однако, иметь в виду, что в общем случае такое перемножение подкоренных выражений дает неравносильные уравнения.

В рассмотренных выше примерах можно было сначала перенести один из радикалов в правую часть уравнения. Тогда в левой части уравнения останется один радикал и после возведения обеих частей уравнения в квадрат в левой части уравнения получится рациональная функция. Такой прием (уединение радикала) довольно часто применяется при решении иррациональных уравнений.

Пример 6 . Решить уравнение-= 3.

Уединив первый радикал, получаем уравнение
=+ 3, равносильное исходному.

Возводя обе части этого уравнения в квадрат, получаем уравнение

x 2 + 5x + 2 = x 2 - 3x + 3 + 6, равносильное уравнению

4x - 5 = 3(*). Это уравнение является следствием исходного уравнения. Возводя обе части уравнения в квадрат, приходим к уравнению
16x 2 - 40x + 25 = 9(x 2 - Зх + 3), или

7x 2 - 13x - 2 = 0.

Это уравнение является следствием уравнения (*) (а значит, и исходного уравнения) и имеет корни. Первый корень x 1 = 2 удовлетворяет исходному уравнению, а второй x 2 =- не удовлетворяет.

Ответ: x = 2.

Заметим, что если бы мы сразу, не уединив один из радикалов, возводили обе части исходного уравнения в квадрат нам бы пришлось выполнить довольно громозкие преобразования.

При решении иррациональных уравнений, кроме уединения радикалов используют и другие методы. Рассмотрим пример использования метода замены неизвестного (метод введения вспомогательной переменной).

Очень не нравятся, некоторым, школьникам уравнения и задачи, в которых встречается знак корня. А ведь решить пример с корнем не так сложно, важно знать, с какой стороны подойти к проблеме. Сам значок, который обозначает извлечение корня, называется радикалом. Как решать корни? Извлечь квадратный корень из числа – это значит, подобрать такое число, которое в квадрате даст то самое значение под знаком радикала.

Итак, как решать квадратные корни

Решать квадратные корни несложно. Например, требуется выяснить, сколько будет корень из 16. Для того чтобы решить этот простой пример, нужно вспомнить, сколько будет 2 в квадрате - 2 2 , затем 3 2 , и, наконец, 4 2 . Только теперь мы увидим, что результат (16) соответствует запросу. То есть, для того, чтобы извлечь корень, нам пришлось подбирать возможные значения. Оказывается, для того, чтобы решать корни, не существует точного и проверенного алгоритма. Для облегчения труда "решателя", математики рекомендуют заучить наизусть (именно назубок, как таблицу умножения) значения квадратов чисел до двадцати. Тогда можно будет запросто извлекать корень из чисел, которые больше сотни. И, наоборот, видеть сразу, что корень из этого числа извлечь нельзя, то есть ответ не будет иметь целое число.

Мы разобрались, как решать квадратные корни. А теперь давайте разберемся, какие квадратные корни решения не имеют. Например, отрицательные числа. Здесь понятно, что если два отрицательных числа перемножить – ответ получится со знаком плюс. Далее что следует знать. Корень извлечь можно из любого числа (кроме отрицательного, как упоминалось выше). Просто ответ может обернуться десятичной дробью. То есть содержать какое-то количество цифр после запятой. Например, корень из двух имеет значение 1.41421 и это еще не все цифры после запятой. Такие значения округляются для облегчения расчетов, иногда до второй цифры после запятой, иногда до третьей или четвертой. Кроме того частенько практикуется так и оставлять число под корнем в качестве ответа, если оно хорошо и компактно смотрится. Ведь и так ясно, что оно означает.

Как решать уравнения с корнями?

Чтобы решать уравнения с корнями, нужно применить одну из придуманных не нами методик. Например, возвести обе части такого уравнения в квадрат. Например:

Корень из X+3=5

Возведем в квадрат левую и правую части уравнения:

Теперь уже видно, как решать это уравнение. Сначала выясним, чему равен X 2 (а он равен 16), а затем извлечем из него корень. Ответ: 4. Однако здесь стоит сказать, что это уравнение на самом деле имеет два решения, два корня: 4 и -4. Ведь -4 в квадрате тоже даст 16.

Кроме этого метода иногда более привлекателен и удобен способ замены переменной, которая находится под корнем – другой переменной, для того, чтобы избавиться от этого корня.

Y = корень из X.

Впоследствии, решив уравнение, мы возвращаемся к замене и заканчиваем вычисления с корнем.

То есть, получаем X = Y 2 . А это и будет решение.

Следует сказать, что есть еще несколько приемов решения уравнений с корнями.

Как решать корни в степени?

Радикал, в основании которого нет степени, означает, что нужно извлечь из выражения или числа квадратный корень, то есть квадратная степень наоборот. Это просто и понятно. Например: корень из 9 = 3, (а 3 2 = 9), корень из 16 = 4 (4 2 = 16) и все в том же духе. Но что значит, если у корня есть степень? Это означает, что нужно, опять же, произвести действие, обратное возведению в эту самую степень. Например, нужно узнать значение корня кубического из 27.
Для этого, надо подобрать такое число, которое при возведении в куб, даст 27. Это 3 (3*3*3=27).

корень 3 из 27 = 3

Похожие действия нужно произвести, если степень корня равна 4, 5. Только в этом случае надо подобрать такое число, которое при возведении в степень n даст значение под корнем n -ной степени.

Тут нужно сказать, что степени корней и степени подкоренных выражений можно сокращать. Однако по правилам. Если число или переменная под корнем имеет степень, кратную степени корня – их можно сократить. Например:

корень 3 из X 6 = X 2

Эти правила действий с корнями и степенями просты, их нужно знать четко, и тогда расчет будет прост. Как решать корни в степени, мы разобрались, теперь продвигаемся дальше.

Как решать корень под корнем?

Это ужасное выражение корень под корнем на первый взгляд не решаемое. Но, чтобы правильно вычислить значение такого выражения, нужно знать свойства корней. В таком случае требуется просто заменить два корня – одним. Для этого степени этих радикалов нужно просто перемножить. Например:

корень 3 из корня 729 = (корень 3 * корень 2) из 729

То есть, здесь мы умножили между собой корень кубический на корень квадратный. В итоге получили корень шестой степени:

корень 6 из 729 = 3

Точно так же нужно решать и другие подобные корни под корнем.

Рассмотрев все предложенные примеры, легко согласиться, что решение корней – не такая уж и трудная задача. Конечно, когда дело сводится к простой, банальной арифметике, иногда легче воспользоваться привычным калькулятором. Однако перед тем как производить вычисления, нужно сделать все возможное, чтобы упростить себе задачу, максимально сократив количество и сложность арифметических вычислений. Тогда решение станет простым и, самое главное – интересным.