» »

Гипотезой де бройля называется утверждение. Гипотеза де Бройля. Корпускулярно-волновой дуализм микрочастиц. Элементы квантовой механики

25.03.2024

Ряд экспериментов, проведенных в 10-х – 20-х гг. ХХ в., показали, что частицы, которые привычно представлялись «кирпичиками мироздания», твердыми шариками – корпускулами, - проявляют волновые свойства. Была продемонстрирована дифракция электронов на кристалле, т.е. пучок электронов вел себя аналогично электромагнитной волне. В 1924 г. Луи де Бройль высказал гипотезу о том, что все частицы (а следовательно, и все тела, состоящие из этих частиц) обладают волновыми свойствами. Мерой этих волновых свойств является так называемая длина волны де Бройля . Действительно, сравним квант (фотон) частоты n и длины волны l = с/n и электрон с импульсом р = m e v :

.

Значение l Б для обычных тел крайне мало, и их волновые свойства нельзя наблюдать (напомним: для дифракции требовалось, чтобы размер объекта имел порядок l). Именно поэтому в опыте проявляются волновые свойства лишь таких легких частиц, как электрон. Самые крупные объекты, для которых были продемонстрированы волновые свойства – это молекулы фуллерена С 60 и С 70 (масса ~ 10 -24 кг).

Итак, одна из важнейших концепций современности – идея о единстве всех форм материи, и вещества, и поля. Нет принципиальных различий между ними, материя может проявлять себя и как вещество, и как поле. Эта концепция носит название корпускулярно-волнового дуализма (двойственности) материи .

При этом мы вынуждены характеризовать все наблюдаемые величины в терминах классической науки, т.е. на уровне того макромира, в котором существуем сами. Нам трудно вообразить объект, являющийся одновременно и частицей, и волной, поскольку в обыденной жизни мы с такими объектами не встречаемся. Приходится в методологических целях разделять эти понятия. Причины кроются в сложности нашего строения как мыслящих существ. В науке кибернетике показано, что самовоспроизводящаяся система должна обладать высоким уровнем сложности. Мы изучаем микромир как бы извне, будучи неизмеримо сложнее устроены, чем его объекты. Именно и только поэтому дуализм материи не кажется нам очевидным, естественным, присущим ей свойством.

3. Динамика микрочастиц. Принцип неопределенностей Гейзенберга

Если частица проявляет свойства волны, то она как бы размыта в пространстве, представляя собой волновой пакет. В этом случае невозможно говорить о ее координате. Но нельзя ли, например, принять за таковую начало волнового пакета или координату максимума его огибающей?

Оказывается, неопределенность координаты микрочастицы – это фундаментальное свойство микромира, более того, скорость микрочастицы также не поддается точному измерению. Этот факт никак не связан с точностью измерительных приборов.

Действительно, представим себе, что мы пытаемся измерить координату и скорость частицы и используем для этого свет. Минимальное расстояние, которое нам удастся измерить, будет определяться длиной волны этого света, и чем она меньше, тем точнее будет измерение. Но чем меньше длина волны света, тем выше его частота и больше энергия кванта. Квант, обладающий большой энергией, будет взаимодействовать с исследуемой частицей и передаст ей часть своей энергии. Та скорость, которую мы в результате измерим, будет вовсе не искомой первоначальной скоростью частицы, а следствием ее взаимодействия с измерительным прибором. Итак, чем точнее мы измеряем координату, тем меньше точность измерения скорости, и наоборот.

Для волны х р = l E/c = l hn/c =l h/l = h – это максимальная точность.

Формула, выражающая взаимосвязь между неопределенностями нахождения координаты х и импульса р частицы, была получена впервые В.Гейзенбергом и носит его имя:

Dх Dр ³ h –

- принцип неопределенностей Гейзенберга.

Аналогичные соотношения выполняются для неопределенностей Dу и Dz.

Для неопределенностей энергии и времени получается:

Итак, принцип неопределенностей – фундаментальное свойство природы, никак не связанное с несовершенством измерительных приборов, а носящее принципиальный характер.

Принцип неопределенностей, наряду с понятием о квантах, лег в основу новой квантовой механики, идеи и круг задач которой революционным образом отличались от всего известного науке ранее. Произошла ломка научной парадигмы, возник принципиально новый подход к рассмотрению явлений микромира, оказавшийся впоследствии очень плодотворным и в других областях науки.

Опыты по дифракции электронов и других частиц

Важным этапом в создании квантовой механики явилось уста­новление волновых свойств микрочастиц. Идея о волновых свой­ствах частиц была первоначально высказана как гипотеза фран­цузским физиком Луи де Бройлем (1924). Эта гипотеза появи­лась благодаря следующим предпосылкам.

Гипотеза де Бройля была сформулирована до опытов, подтверждаю­щих волновые свойства частиц. Де Бройль об этом позднее, в 1936 г. писал так: «...не можем ли мы предположить, что и электрон так же двойстве­нен, как и свет? На первый взгляд такая идея казалась очень дерзкой. Ведь мы всегда представляли себе электрон в виде электрически заряженной материальной точки, которая подчиняется законам классической динами­ки. Электрон никогда не проявлял волновых свойств, таких, скажем, ка­кие проявляет свет в явлениях интерференции и дифракции. Попытка приписать волновые свойства электрону, когда этому нет никаких экспе­риментальных доказательств, могла выглядеть как ненаучная фантазия».

В физике в течение многих лет господствовала теория, соглас­но которой свет есть электромагнитная волна. Однако после ра­бот Планка (тепловое излучение), Эйнштейна (фотоэффект) и др. стало очевидным, что свет обладает корпускулярными свойст­ вами.

Чтобы объяснить некоторые физические явления, необходимо рассматривать свет как поток частиц - фотонов. Корпускуляр­ные свойства света не отвергают, а дополняют его волновые свой­ства. Итак, фотон - элементарная частица, движущаяся со скоростью света, обладающая волновыми свойствами и име­ ющая энергию е = hv , где v - частота световой волны.

Выражение для импульса фотона р ф получается из известной формулы Эйнштейна е = тс 2 и соотношений е = hv и р. = тс

(23.1)

где с - скорость света в вакууме, λ, - длина световой волны. Эта формула была

использована де Бройлем и для других микрочастиц -массой т, движущихся со скоростью и:

р = ти = h/λ откуда

(23.2)

По де Бройлю, движение частицы, например электрона, опи­сывается волновым

процессом с характеристической длиной вол­ны Я, в соответствии с формулой (23.2). Эти волны

называют вол­ нами де Бройля.

Гипотеза де Бройля была столь необычной, что многие круп­ные физики-современники не

придали ей какого-либо значения. Несколькими годами позже эта гипотеза получила экспери-

мен­тальное подтверждение: была обнаружена дифракция электро­нов.

Найдем зависимость длины волны электрона от ускоряющего напряжения U электрического

поля, в котором он движется. Из­менение кинетической энергии электрона равно работе сил поля:

Выразим отсюда скорость v и, подставив ее в (23.2), получим

Для получения пучка электронов с достаточной энергией, ко­торый можно зафиксировать, например, на экране осциллографа, необходимо ускоряющее напряжение порядка 1 кВ. В этом случае из (23.3) находим Я, = 0,4 10~ 10 м, что соответствует длине волны рентгеновского излучения.

Дифракция рентгеновских лучей наблюдается на кристаллических телах; следовательно, для диф­ракции электронов необходимо также использовать кристаллы.

К. Дэвиссон и Л. Джермер впервые наблюдали дифракцию электронов на монокристалле никеля, Дж. П. Томсон и независи­мо от него П. С. Тартаковский - на металлической фольге (поли­кристаллическое тело). На рис. 23.1 изображена электронограм-ма - дифракционная картина, полученная от взаимодействия электронов с поликристаллической фольгой. Сравнивая этот ри­сунок с рис. 19.21, можно заметить сходство дифракции электро­нов и рентгеновских лучей.

Способностью дифрагировать обладают и другие частицы, как заряженные (протоны, ионы и др.), так и нейтральные (нейтро­ны, атомы, молекулы).

Аналогично рентгеноструктурному анализу можно применять дифракцию частиц для оценки степени упорядоченности располо­жения атомов и молекул вещества, а также для измерения пара­метров кристаллических решеток. В настоящее время широкое распространение имеют методы электронографии (дифракция электронов) и нейтронографии (дифракция нейтронов).

Может возникнуть вопрос: что происходит с отдельными час­тицами, как образуются максимумы и минимумы при дифракции отдельных частиц?

Опыты по дифракции пучков электронов очень малой интен­ сивности, т. е. отдельных частиц, показали, что при этом электрон не «размазывается» по разным направ­ лениям, а ведет себя как целая частица. Однако вероятность отклонения элект­ рона по отдельным направлениям в ре­ зультате взаимодействия с объектом дифракции различна. Наиболее вероят­ но попадание электронов в те места, ко­ торые по расчету соответствуют макси­ мумам дифракции, менее вероятно их попадание в места минимумов. Таким образом, волновые свойства присущи не только коллективу электронов, но и каждому электрону в отдельности. Рис23.1

Электронный микроскоп.

Понятие об электронной оптике

Волновые свойства частиц можно использовать не только для дифракционного структурного анализа, но и для получения увеличенных изображений предмета.

Открытие волновых свойств электрона сделало возможным со­здание электронного микроскопа. Предел разрешения оптическо­го микроскопа (21.19) определяется в основном наименьшим зна­чением длины волны света, воспринимаемого глазом человека. Подставив в эту формулу значение длины волны де Бройля (23.3), найдем предел разрешения электронного микроскопа, в котором изображение предмета формируется электронными пучками:

(23.4

Видно, что предел разрешения г электронного микроскопа за­висит от ускоряющего напряжения U , увеличивая которое можно добиться, чтобы предел разрешения был значительно меньше, а разрешающая способность значительно больше, чем у оптическо­го микроскопа.

Электронный микроскоп и его отдельные элементы по своему назначению подобны оптическому, поэтому воспользуемся анало­гией с оптикой для объяснения его устройства и принципа дейст­вия. Схемы обоих микроскопов изображены на рис. 23.2 - оп­тический; б - электронный).

В оптическом микроскопе носителями информации о предмете АВ являются фотоны, свет. Источником света обычно служит лампа накаливания 1 . После взаимодействия с предметом (погло­щение, рассеяние, дифракция) поток фотонов преобразуется и со­держит информацию о предмете. Поток фотонов формируется с помощью линз: конденсора 3, объектива 4, окуляра 5. Изображе­ние AjBj регистрируется глазом 7 (или фотопластинкой, фотолю-минесцирующим экраном и т. д.).

В электронном микроскопе носителем информации об образце являются электроны, а их источником - подогреваемый катод 1. Ускорение электронов и образование пучка осуществляется фоку­сирующим электродом и анодом - системой, называемой элек­тронной пушкой 2. После взаимодействия с образцом (в основном рассеяние) поток электронов преобразуется и содержит информа­цию об образце. Формирование потока электронов происходит

под воздействием электрического поля (система электродов и кон­денсаторов) и магнитного (система катушек с током). Эти системы называют электронными линзами по аналогии с оптическими линзами, которые формируют световой поток (3 - конденсорная; 4 - электронная, служащая объективом; 5 - проекционная). Изображение регистрируется на чувствительной к электронам фотопластинке или катодолюминесцирующем экране 6.

Чтобы оценить предел разрешения электронного микроскопа, подставим в формулу (23.4) ускоряющее напряжение U = 100 кВ и угловую апертуру и порядка 10 2 рад (приблизительно такие уг­лы используют в электронной микроскопии). Получим г ~ 0,1 нм; это в сотни раз лучше, чем у оптических микроскопов. Примене­ние ускоряющего напряжения, большего 100 кВ, хотя и повыша­ет разрешающую способность, но сопряжено с техническими сложностями, в частности происходит разрушение исследуемого объекта электронами, имеющими большую скорость. Для биоло­гических тканей из-за проблем, связанных с приготовлением об­разца, а также с его возможным радиационным повреждением, предел разрешения составляет около 2 нм. Этого достаточно, что-

бы увидеть отдельные молекулы. На рис. 23.3 показаны нити бел­ка актина, имеющие диаметр примерно 6 нм. Видно, что они со­стоят из двух спирально закрученных цепей молекул белка.

Укажем некоторые особенности эксплуатации электронного микроскопа. В тех частях его, где пролетают электроны, должен быть вакуум, так как в противном случае столкновение электронов с молекулами воздуха (газа) приведет к искажению изображения. Это требование к электронной микроскопии усложняет процедуру исследования, делает аппаратуру более громоздкой и дорогой. Ва­куум искажает нативные свойства биологических объектов, а в ря­де случаев разрушает или деформирует их.

Для рассматривания в электронном микроскопе пригодны очень тонкие срезы (толщина менее 0,1 мкм), так как электроны сильно поглощаются и рассеиваются веществом.

Для исследования поверхностной геометрической структуры клеток, вирусов и других микрообъектов делают отпечаток их по­верхности на тонком слое пластмассы (реплику). Обычно предва­рительно на реплику в вакууме напыляют под скользящим (ма­лым к поверхности) углом слой сильно рассеивающего электроны тяжелого металла (например, платины), оттеняющий выступы и впадины геометрического рельефа.

К достоинствам электронного микроскопа следует отнести боль­шую разрешающую способность, позволяющую рассматривать крупные молекулы, возможность изменять при необходимости ус­коряющее напряжение и, следовательно, предел разрешения, а также сравнительно удобное управление потоком электронов с по­мощью магнитных и электрических полей.



Наличие волновых и корпускулярных свойств как у фотонов, так и у электронов и других частиц, позвол яет ряд положений и

законов оптики распространить и на описание движения заря­женных частиц в электрических и магнитных полях.

Эта аналогия позволила выделить как самостоятельный раздел электронную оптику - область физики, в которой изучается структура пучков заряженных частиц, взаимодействующих с электрическими и магнитными полями. Как и обычную оптику, электронную можно подразделить на геометрическую (лучевую) и волновую (физическую).

В рамках геометрической электронной оптики возможно, в ча­стности, описание движения заряженных частиц в электриче­ском и магнитном полях, а также схематическое построение изо­бражения в электронном микроскопе (см. рис. 23.2, б).

Подход волновой электронной оптики важен в том случае, ког­да проявляются волновые свойства заряженных частиц. Хорошей иллюстрацией этому является нахождение разрешающей способ­ности (предела разрешения) электронного микроскопа, приведен­ное в начале параграфа

Частиц вещества

Двойственная корпускулярно-волновая природа

В 1924 г. французский физик Луи де Бройль выдвинул гипотезу, согласно которой движение электрона, или какой-либо другой частицы, связано с волновым процессом. Длина волны этого процесса:

а частота ω = Е/ħ , т.е. корпускулярно-волновой дуализм присущ всем без исключения частицам.

Если частица имеет кинетическую энергию Е , то ей соответствует длина волны де Бройля:

Для электрона, ускоряемого разностью потенциалов , кинетическая энергия ,и длина волны

Å. (2.1)

Опыты Дэвиссона и Джермера (1927). Идея их опытов за­ключалась в следующем. Если пучок электронов обладает вол­новыми свойствами, то можно ожидать, даже не зная механиз­ма отражения этих волн, что их отражение от кристалла будет иметь такой же интерференционный характер, как у рентге­новских лучей.

В одной серии опытов Дэвиссона и Джермера для обнаруже­ния дифракционных максимумов (если таковые есть) измеря­лись ускоряющее напряжение электронов и одновременно положение детектора D (счетчика отраженных электронов). В опы­те использовался монокристалл никеля (кубической системы), сошлифованный так, как показано на рис.2.1.

Если его повернуть вокруг вертикаль­ной оси в положение, соответствующее ри­сунку, то в этом положении сошлифованная поверхность покрыта правильными рядами атомов, перпендикулярными к плоскости падения (плоскости рисунка), расстояние между которыми d= 0,215 нм.

Детектор перемещали в плоскости падения, меняя угол θ. При угле θ = 50° и ускоряю­щем напряжении U= 54Внаблюдался осо­бенно отчётливый максимум отраженных электронов, полярная диаграмма которого показана на рис.2.2.

Этот максимум можно истолковать как интерференционный максимум первого по­рядка от плоской дифракционной решетки с периодом

, (2.2)

что видно из рис.2.3. На этом рисун­ке каждая жирная точка представляет собой проекцию цепочки атомов, расположенных на прямой, перпендикулярной плоскости рисунка. Пе­риод d может быть измерен независи­мо, например, по дифракции рентге­новских лучей.

Вычисленная по формуле (2.1) дебройлевская длина волны для U= 54В равна 0,167 нм. Соответству­ющая же длина волны, найденная из формулы (2.2), равна 0,165 нм. Совпадение настолько хорошее, что полученный результат следует признать убедительным под­тверждением гипотезы де Бройля.

Другая серия опытов Дэвиссона и Джермера состояла в из­мерении интенсивности I отраженного электронного пучка при заданном угле падения, но при различных значениях ускоряю­щего напряжения U.

Теоретически должны появиться при этом интерференцион­ные максимумы отражения подобно отражению рентгеновских лучей от кристалла. От различных кристаллических плоскостей кристалла в результате дифракции падающего излучения на атомах исходят волны, как бы испытавшие зеркальное отраже­ние от этих плоскостей. Данные волны при интерференции усиливают друг друга, если выполняется условие Брэгга-Вульфа:



, m =1,2,3,…, (2.3)

где d - межплоскостное расстояние, α - угол скольжения.

Напомним вывод этой формулы. Из рис. 2.4 видно, что разность хода двух волн, 1 и 2, отразившихся зеркальноот соседних атомных слоев, АВС = . Следователь­но, направления, в которых возникают ин­терференционные максимумы, определяют­ся условием (2.3).

Теперь подставим в формулу (2.3) выра­жение (2.1) для дебройлевской длины вол­ны. Поскольку значения α и d экспериментаторы оставляли неизменными, то из формулы (2.3) следует, что

~т, (2.4)

т.е. значения , при которых образуются максимумы отра­жения, должны быть пропорциональны целым числам т = 1, 2, 3, ..., другими словами, находиться на одинаковых расстояни­ях друг от друга.

Это и было проверено на опыте, результаты которого пред­ставлены на рис.2. 5, где U представлено в вольтах. Видно, что максимумы интен­сивности I почти равноудалены друг от друга (такая же карти­на возникает и при дифракции рентгеновских лучей от крис­таллов).

Полученные Дэвиссоном и Джермером результаты весьма убедительно подтверждают гипотезу де Бройля. В теоретическом отношении, как мы видели, анализ дифракции дебройлевских волн полностью совпадает с дифрак­цией рентгеновского излучения.

Итак, характер зависимости (2.4) экспериментально подтвердился, однако наблюдалось некоторое расхождение с пред­сказаниями теории. А именно, между положениями экспери­ментальных и теоретических максимумов (последние показаны стрелками на рис. 2.5) наблюдается систематическое расхожде­ние, которое уменьшается с увеличением ускоряющего напря­жения U. Это расхождение, как выяснилось в дальнейшем, обу­словлено тем, что при выводе формулы Брэгга-Вульфа не было учтено преломление дебройлевских волн.

О преломлении дебройлевских волн. Показатель преломле­ния п дебройлевских волн, как и электромагнитных, определя­ется формулой

где и - фазовые скорости этих волн в вакууме и среде (кристалле).

Фазовая ско­рость дебройлевcкой волны - принципиально ненаблюдаемая величина. Поэтому формулу (2.5) следует преобразовать так, чтобы показатель преломления п можно было выразить через отношение измеряемых величин. Это можно сделать следующим образом. По определению, фазовая скорость

, (2.6)

где k - волновое число. Считая аналогично фотонам, что частота и дебройлевских волн тоже не меняется при переходе границы раздела сред (если такое предположение несправедливо, то опыт неизбежно укажет на это), представим (2.5) с уче­том (2.6) в виде

Попадая из вакуума в кристалл (металл), электроны оказыва­ются в потенциальной яме. Здесь их кине­тическая энергия возрастает на «глубину» потенциальной ямы (рис. 2.6). Из формулы (2.1), где ,следует, что λ~ Поэтому выражение (2.7) можно переписать так:

(2.8)

где U 0 - внутренний потенциал кристалла. Видно, что чем бо­льше U (относительно ), тем п ближе к единице. Таким обра­зом, п проявляет себя особенно при малых U ,и формула Брэг­га-Вульфа принимает вид

(2.9)

Убедимся, что формула Брэгга-Вульфа (2.9) с учетом пре­ломления действительно объясняет положения максимумов ин­тенсивности на рис. 2.5. Заменив в (2.9) п и λ согласно формулам (2.8) и (2.1) их выражениями через ускоряющую разность потенциалов U, т.е.

(2.11)

Теперь учтем, что распределение на рис.2.5 получено для никеля при значениях U 0 =15 B, d =0,203 нм и α =80°. Тогда (2.11) после несложных преобразований можно перепи­сать так:

(2.12)

Вычислим по этой формуле значение , например, для макси­мума третьего порядка (m = 3), для которого расхождение с формулой Брэгга-Вульфа (2.3) оказалось наибольшим:

Совпадение с действительным положением максимума 3-го по­рядка не требует комментариев.

Итак, опыты Дэвиссона и Джермера следует признать блес­тящим подтверждением гипотезы де Бройля.

Опыты Томсона и Тартаковского . В этих опытах пучок элек­тронов пропускался через поликристаллическую фольгу (по ме­тоду Дебая при изучении дифракции рентгеновского излучения). Как и в случае рентгеновского излучения, на фотопластинке, рас­положенной за фольгой, наблюдалась система дифракционных колец. Сходство обеих картин поразительно. Подозрение, что система этих колец порождается не электронами, а вторичным рентгеновским излучением, возникающим в результате паде­ния электронов на фольгу, легко рассеивается, если на пути рассеянных электронов создать магнитное поле (поднести по­стоянный магнит). Оно не влияет на рентгеновское излучение. Такого рода проверка показала, что интерференционная карти­на сразу же искажалась. Это однозначно свидетельствует, что мы имеем дело именно с электронами.

Г. Томсон осуществил опыты с быстрыми электронами (де­сятки кэВ), II.С. Тартаковский - со сравнительно медленными электронами (до 1,7 кэВ).

Опыты с нейтронами и молекулами. Для успешного наблю­дения дифракции волн на кристаллах необходимо, чтобы длина волны этих волн была сравнима с расстояниями между узлами кристаллической решетки. Поэтому для наблюдения дифракции тяжелых частиц необходимо пользоваться частицами с достаточ­но малыми скоростями. Соответствующие опыты по дифракции нейтронов и молекул при отражении от кристаллов были проде­ланы и также полностью подтвердили гипотезу де-Бройля в при­менении и к тяжелым частицам.

Благодаря этому было экспериментально доказано, что вол­новые свойства являются универсальным свойством всех час­тиц. Они не обусловлены какими-то особенностями внутренне­го строения той или иной частицы, а отражают их общий закон движения.

Опыты с одиночными электронами . Описанные выше опыты выполнялись с использованием пучков частиц. Поэтому возни­кает естественный вопрос: наблюдаемые волновые свойства вы­ражают свойства пучка частиц или отдельных частиц?

Чтобы ответить на этот вопрос, В. Фабрикант, Л. Биберман и Н. Сушкин осуществили в 1949 г. опыты, в которых применялись столь слабые пучки электронов, что каждый электрон проходил через кристалл заведомо поодиночке и каждый рассеянный элект­рон регистрировался фотопластинкой. При этом оказалось, что отдельные электроны по­падали в различные точки фотопластинки со­вершенно беспорядочным на первый взгляд образом (рис.2.7,а). Между тем при доста­точно длительной экспозиции на фотоплас­тинке возникала дифракционная картина (рис.2.7, б), абсолютно идентичная картине дифракции от обычного электронного пучка. Так было доказано, что волновыми свойст­вами обладают и отдельные частицы.

Таким образом, мы имеем дело с микро­объектами, которые обладают одновременно как корпускулярными, так и волновыми свойствами. Это позволяет нам в дальней­шем говорить об электронах, но выводы, к которым мы придем, имеют совершенно об­щий смысл и в равной степени применимы к любым частицам.

Из формулы де Бройля следовало, что волновые свойства должны быть присущи любой частице вещества, имеющей массу и скорость . В 1929г. опыты Штерна доказали, что формула де Бройля справедлива и для пучков атомов и молекул. Он получил следующее выражение для длины волны:

Ǻ,

где μ – молярная масса вещества, N А – число Авогадро, R – универсальная газовая постоянная, Т – температура.

При отражении пучков атомов и молекул от поверхностей твердых тел должны наблюдаться дифракционные явления, которые описываются теми же соотношениями, что и плоская (двумерная) дифракционная решетка. Опыты показали, что кроме частиц, рассеянных под углом, равным углу падения, наблюдаются максимумы числа отраженных частиц под другими углами, определяемыми формулами двумерной дифракционной решетки.

Формулы де Бройля оказались справедливыми также для нейтронов. Это подтвердили опыты по дифракции нейтронов на приемниках.

Таким образом, наличие волновых свойств у движущихся частиц, обладающих массой покоя, есть универсальное явление, не связанное с какой-либо спецификой движущейся частицы.

Отсутствие волновых свойств у макроскопических тел объясняется следующим образом. Подобно той роли, кото­рую играет скорость света при решении вопроса о применимо­сти ньютоновской (нерелятивистской) механики, существует критерий, показывающий в каких случаях можно ограничиться классическими представлениями. Этот критерий связан с постоянной Планка ħ. Физическая размерность ħ равна (энергия )x(время ),или (им­пульс )x(длина ),или (момент импульса). Величину с такой размерностью называют действием. Постоянная Планка явля­ется квантом действия.

Если в данной физической системе значение некоторой характерной величи­ны Н сразмерностью действия сравнимо с ħ , то поведение этой системы может быть описано только в рамках квантовой тео­рии. Если же значение Н очень велико по сравнению с ħ , то поведение системы с высокой точностью описывают законы клас­сической физики.

Отметим, однако, что данный критерий имеет приближен­ный характер. Он указывает лишь, когда следует проявлять осторожность. Малость действия Н не всегда свидетельствует о полной неприменимости классического подхода. Во многих случаях она может дать некоторое качественное представление о поведении системы, которое можно уточнить с помощью квантового подхода.

Недостатки теории Бора указывали на необходимость пересмотра основ квантовой теории и представлений о природе микрочастиц (электронов, протонов и т.п.). Возник вопрос о том, насколько исчерпывающим является представление электрона в виде малой механической частицы, характеризующейся определенными координатами и определенной скоростью.

Мы уже знаем, что в оптических явлениях наблюдается своеобразный дуализм. Наряду с явлениями дифракции, интерференции (волновыми явлениями) наблюдаются и явления, характеризующие корпускулярную природу света (фотоэффект, эффект Комптона).

В 1924 г. Луи де Бройль выдвинул гипотезу, что дуализм не является особенностью только оптических явлений , а имеет универсальный характер. Частицы вещества также обладают волновыми свойствами .

«В оптике, – писал Луи де Бройль, – в течение столетия слишком пренебрегали корпускулярным способом рассмотрения по сравнению с волновым; не делалась ли в теории вещества обратная ошибка?» Допуская, что частицы вещества наряду с корпускулярными свойствами имеют также и волновые, де Бройль перенес на случай частиц вещества те же правила перехода от одной картины к другой, какие справедливы в случае света.

Если фотон обладает энергией и импульсом , то и частица (например электрон), движущаяся с некоторой скоростью, обладает волновыми свойствами, т.е. движение частицы можно рассматривать как движение волны.

Согласно квантовой механике, свободное движение частицы с массой m и импульсом (где υ – скорость частицы) можно представить как плоскую монохроматическую волну (волну де Бройля ) с длиной волны

(3.1.1)

распространяющуюся в том же направлении (например в направлении оси х ), в котором движется частица (рис. 3.1).

Зависимость волновой функции от координаты х даётся формулой

, (3.1.2)

где – волновое число волновой вектор направлен в сторону распространения волны или вдоль движения частицы:

. (3.1.3)

Таким образом, волновой вектор монохроматической волны , связанной со свободно движущейся микрочастицей, пропорционален её импульсу или обратно пропорционален длине волны .

Поскольку кинетическая энергия сравнительно медленно движущейся частицы , то длину волны можно выразить и через энергию:

. (3.1.4)

При взаимодействии частицы с некоторым объектом – с кристаллом, молекулой и т.п. – её энергия меняется: к ней добавляется потенциальная энергия этого взаимодействия, что приводит к изменению движения частицы. Соответственно, меняется характер распространения связанной с частицей волны, причём это происходит согласно принципам, общим для всех волновых явлений. Поэтому основные геометрические закономерности дифракции частиц ничем не отличаются от закономерностей дифракции любых волн. Общим условием дифракции волн любой природы является соизмеримость длины падающей волны λ с расстоянием d между рассеивающими центрами : .

Гипотеза Луи де Бройля была революционной, даже для того революционного в науке времени. Однако, она вскоре была подтверждена многими экспериментами.

Из курса оптики известно, что целый ряд оптических явлений удается последовательно описать с волновой точки зрения; примера­ми служат хорошо известные явления интерференции и дифракции света. С другой стороны (сошлемся на рассмотренный в предыдущем параграфе эффект Комптона), свет столь же явно демонстрирует свою корпуску­лярную природу. Этот дуализм "волна-частица" надо рассматривать как экспериментальный факт, и поэтому последовательная теория све­та должна быть корпускулярно-волновой. Разумеется, в каких-то предельных случаях могут оказаться достаточными только волновое или только корпускулярное описания.

Оказывается, и при этом мы вновь сошлемся на эксперимент, что и частицы вещества с ненулевой с массой (к ним относятся, например, электроны, протоны, нейтроны, атомы, молекулы и т. д.) также обнаруживают волновые свойства, так что между ними и фото­нами нет принципиального различия.

В этом пункте при переходе от макро — к микрообъектам возника­ет известная трудность в понимании существа физических явлений. Действительно, на уровне макроявлений корпускулярное и волновое описание четко разграничены. На уровне микроявлений эта граница в значительной степени размывается и движение микрообъекта стано­вится одновременно и волновым, и корпускулярным. Иными словами, более адекватной действительности становится ситуация, при которой микрообъект в какой-то мере похож на корпускулу, в какой-то мере­ на волну, причем эта мера зависит от физических условий наблюдения микрообъекта.

Последовательной теорией, учитывающей эту особенность всех микрочастиц, является квантовая теория. Но прежде чем перейти к изложению ее основных идей, необходимо установить каким образом один и тот же физический объект в принципе может проявлять то корпускулярные, то волновые свойства и какая существует сопостави­мость этих двух различных способов описания.

В оптических явлениях установлен критерий применимости поня­тия луча (т. е. корпускулярной картины) и найдены правила перехода от волновых понятий к корпускулярным. Продолжая рассуждения в этом направлении, можно надеяться! что здесь же лежит переход в обрат­ном направлении: от корпускулярных понятий классической механики к волновым представлениям квантовой механики.

Соответствующие идеи, использующие оптико-механическую анало­гию, были высказаны французским физиком Л. де Бройлем в 1924 г. Де Бройль выдвинул смелую гипотезу о том, что дуализм "волна-час­тица" не является особенностью одних только оптических явлений, но имеет универсальную применимость во всей физике микромира. В своей книге "Революция в физике" он писал: "В оптике в течение столетия слишком пренебрегали корпускулярным способом рассмотрения по сравнению с волновым; не делалось ли в теории материи обратной ошибки? Не думали ли мы слишком много о картине "частиц" и не пре­небрегали ли чрезмерно картиной волн?”

К допущению волновых свойств у материальных частиц его приве­ли также следующие соображения. В конце 20-х годов XIX в. В. Гамильтон обратил внимание на удивительную аналогию между геометри­ческой оптикой и классический (ньютоновской) механикой. Было пока­зано, что основные законы этих столь непохожих на первый взгляд разделов физики представимы в математически тождественной форме. В результате вместо того, чтобы рассматривать движение частицы во внешнем поле с потенциальной энергией , можно изучать рас­пространение светового луча в оптически неоднородной среде с подоб­ранным соответствующим образом показателем преломления . Разумеется, эта эквивалентность описаний допускает и обратный пе­реход.

Отмеченная аналогия распространялась Гамильтоном только на геометрическую оптику и классическую механику. Но, как уже отмеча­лось, геометрическая оптика является приближением более общей вол­новой оптики и не описывает сугубо волновых свойств света. В свою очередь, классическая механика также имеет ограниченную область применимости: она, как известно, не может объяснить существование дискретных уровней энергии в атомных системах.

Идея де Бройля заключалась в том, чтобы расширить аналогию между оптикой и механикой и волновой оптике сопоставить волновую механику, попытавшись применить последнюю к внутриатомным явлениям. "Попытка приписать электрону, и вообще всем частицам, подобно фотонам, двойственную природу, наделить их волновыми корпускуляр­ными свойствами, связанными между собой квантом действия (постоян­ной Планка ), – такая задача представлялась крайне необхо­димой и плодотворной… Необходимо создать новую механику волново­го характера, которая будет относиться к старой механике как вол­новая оптика к геометрической оптике", – писал де Бройль в книге "Революция в физике".

За открытие волновых свойств вещества Л. де Бройль в 1929 г. был удостоен Нобелевской премии.

Обратимся теперь к формальной стороне вопроса. Пусть мы имеем микрочастицу (например, электрон) с массой M , движущуюся в вакууме с постоянной скоростью . Пользуясь корпускулярным описанием, припишем частице энергию E и импульс в соответствии с формулами (рассмотрим общий случай релятивистской частицы).

. (1.2.1)

С другой стороны, в волновой картине мы используем понятия частоты и длины волны (или волнового числа ). Если оба описания являются различными аспектами одного и того же физическо­го объекта, то между ними должна быть однозначная связь. Следуя де Бройлю, перенесем на случай частиц вещества те же правила пере­хода от одной картины к другой, справедливые в применении к све­ту:

(1.2.2)

Соотношения (1.2.2) получили название Формул де Бройля . Длина волны, связанная с частицей, определяется выражением

(1.2.3)

Ее называют Длиной волны де Бройля . Нетрудно сообразить по аналогии со светом, что именно эта длина волны должна фигурировать в критериях применимости волновой или корпускулярной картин.

Наиболее простым типом волны в вакууме с определенной часто­той и волновым вектором является плоская монохроматическая волна