» »

Как определить тип уравнения. Виды дифференциальных уравнений, методы решения. Уравнения с разделяющимися переменными

22.01.2024

Инструкция

Если уравнение представлено в виде: dy/dx = q(x)/n(y), относите их к категории дифференциальных уравнений с разделяющимися переменными. Их можно решить, записав условие в дифференциалах по следующей : n(y)dy = q(x)dx. Затем проинтегрируйте обе части. В некоторых случаях решение записывается в виде интегралов, взятых от известных функций. К примеру, в случае dy/dx = x/y, получится q(x) = x, n(y) = y. Запишите его в виде ydy = xdx и проинтегрируйте. Должно получиться y^2 = x^2 + c.

К линейным уравнениям относите уравнения «первой ». Неизвестная функция с ее производными входит в подобное уравнение лишь в первой степени. Линейное имеет вид dy/dx + f(x) = j(x), где f(x) и g(x) – функции, зависящие от x. Решение записывается с помощью интегралов, взятых от известных функций.

Учтите, что многие дифференциальные уравнения - это уравнения второго порядка (содержащие вторые производные) Таким, например, является уравнение простого гармонического движения, записанное в виде общей : md 2x/dt 2 = –kx. Такие уравнения имеют, в , частные решения. Уравнение простого гармонического движения является примером достаточно важного класса: линейных дифференциальных уравнений, у которых имеется постоянный коэффициент.

Рассмотрите более общий пример (второго порядка): уравнение, где у и z – являются заданными постоянными, f(x) – заданная функция. Подобные уравнения можно решить разными способами, к примеру, при помощи интегрального преобразования. Это же самое можно сказать и про линейные уравнения более высоких порядков, имеющих постоянные коэффициенты.

Примите к сведению, что уравнения, которые содержат неизвестные функции, а также их производные, стоящие в степени выше первой, называются нелинейными. Решения нелинейных уравнений достаточно сложны и поэтому, для каждого из них используется свой частный случай.

Источники:

  • типы дифференциальных уравнений

Изучение курса дифференциального исчисления всегда начинается с составления дифференциальных уравнений. Прежде всего рассматривают несколько физических задач, при математическом решении которых неизбежно возникают производные различных порядков. Уравнения, которые содержат аргумент, искомую функцию и ее производные называют дифференциальными.

Вам понадобится

  • - ручка;
  • - бумага.

Инструкция

В исходных физических задачах аргументом, чаще всего, является t. Общий принцип составления дифференциального уравнения (ДУ) состоит в том, что на малых приращениях аргумента функции почти не меняются, что позволяет заменять приращения функции их дифференциалами. Если в постановке задачи речь зайдет о изменения какого-либо параметра, то сразу следует производную параметра (со знаком минус, если некоторый параметр уменьшается).

Если в процессе рассуждений и выкладок возникли интегралы, их можно устранить дифференцированием. И наконец, в физических формулах производных и так более чем достаточно. Самое главное – рассмотреть как можно примеров, которые в процессе необходимо довести до стадии составления ДУ.

Решение. Пусть входное напряжение U(t), а искомое выходное u(t) (см. рис.1).
Входное напряжение состоит из суммы выходного u(t) и падения напряжения на сопротивления R - Ur(t).
U(t)=Ur(t)+Uc(t); по закону Ома Ur(t)=i(t)R, i(t)=C(dUc/dt). С другой стороны Uc(t)=u(t), а i(t) – ток цепи (в том числе и на емкости С). Значит i=C(du/dt), Ur=RC(du/dt). Тогда баланс напряжений в электрической цепи можно переписать в виде: U=RC(du/dt)+u. Разрешая это уравнение относительно первой производной, имеем:
u’(t)=-(1/RC)u(t)+(1/RC)U(t).
Это ДУ первого порядка. Решением задачи будет его общее решение (неоднозначное). Для получения однозначного решения надо задавать начальные условия (краевые) в виде u(0)=u0.

Пример 2. Найти уравнение гармонического осциллятора.

Решение. Гармонический осциллятор (колебательный контур) – основной элемент радиопередающих и радиоприемных устройств. Это замкнутая электрическая цепь, содержащая параллельно соединенные емкость С (конденсатор) и индуктивность L (катушка). Известно, что токи и напряжения на таких реактивных элементах связаны равенствами Iс=C(dUc/dt)=CU’c,
Ul=-L(dIl/dt)=-LI’l . Т.к. в этой задаче все напряжения и все токи одинаковы, то окончательно
I’’+(1/LC)I=0.
Получено ДУ второго порядка.

Видео по теме

Определить вид дифференциального уравнения необходимо для того, чтобы подобрать соответствующий каждому случаю способ решения. Классификация видов довольно большая, а решение основывается на методах интегрирования.

Инструкция

Необходимость в дифференциальных уравнениях возникает тогда, когда известны , а сама она остается неизвестной величиной. Часто такая ситуация возникает при исследовании физических . Свойства функции описываются ее производными или дифференциалом, поэтому единственным способом ее нахождения является интегрирование. Прежде чем приступать к решению, нужно определить вид дифференциального уравнения.

Существует несколько дифференциальных уравнений, простейшим из них является выражение у’ = f(х), где у’ = dу/dх. Кроме того, к этому виду может быть приведено равенство f(х) у’ = g(х), т.е. у’ = g(х)/f(х). Разумеется, это возможно только при условии, что f(х) не обращается в ноль. Пример: 3^х у’ = х² – 1 → у’ = (х² - 1)/3^х.

Дифференциальные уравнения с разделенными переменными называются так потому, что производная у’ в данном случае буквально разделена на две составляющие dу и dх, которые находятся по разные стороны от знака равно. Это уравнения вида f(у) dу = g(х) dх. Пример: (у² – sin у) dу = tg х/(х - 1) dх.

ВВЕДЕНИЕ

Дифференциальное уравнение -- уравнение, связывающее значение некоторой неизвестной функции в некоторой точке и значение её производных различных порядков в той же точке. Дифференциальное уравнение содержит в своей записи неизвестную функцию, её производные и независимые переменные; однако не любое уравнение, содержащее производные неизвестной функции, является дифференциальным уравнением.

Порядок дифференциального уравнения -- наибольший порядок производных, входящих в него.

Процесс решения дифференциального уравнения называется интегрированием.

Все дифференциальные уравнения можно разделить на линейные и не линейные.

Нелинейное дифференциальное уравнение - дифференциальное уравнение (обыкновенное или с частными производными), в которое по крайней мере одна из производных неизвестной функции (включая и производную нулевого порядка - саму неизвестную функцию) входит нелинейно.

Иногда под Н.Д.У. понимается наиболее общее уравнение определенного вида. Напр., нелинейнымобыкновенным дифференциальным уравнением 1-го порядка наз. уравнение с произвольной функцией при этом линейное обыкновенное дифференциальное уравнение 1-го порядка соответствует частному случаю

Н. д. у. с частными производными 1-го порядка для неизвестной функции z от независимых переменных имеет вид:

где F- произвольная функция своих аргументов;

Виды нелинейных дифференциальных уравнений 1-го порядка

Уравнения с разделенными переменными

Общий интеграл

Общий интеграл

Уравнение в полных дифференциалах

Существует такая функция u(x, y), что

Общий интеграл уравнения в полных дифференциалах u(x, y) = C.

Функция u может быть представлена в виде

Однородное уравнение

где P(x, y), Q(x, y) - однородные функции одной и той же степени

Подстановка y = ux, dy = xdu + udx переводит однородное уравнение в линейное относительно функции u:

Уравнение вида

1. Если прямые и пересекаются в точке (x0; y0), то замена приводит его к однородному уравнению

2. Если прямые и параллельны, то замена приводит к уравнению с разделяющимися переменными

Уравнение Бернулли

Подстановкой сводится к линейному

Уравнение Риккати

Если известно какое-либо из решений, то уравнение сводится к

линейному подстановкой.

Уравнение Лагранжа

Дифференцируя по x и полагая y" = p, приходим к линейному уравнению относительно x как функции p:

Уравнение Клеро

Частный случай уравнения Лагранжа.

ПРАКТИЧЕСКАЯ ЧАСТЬ.

Уравнения Риккати

Решить дифференциальное уравнение

y" = y + y2 + 1.

Данное уравнение является простейшим уравнением Риккати с постоянными коэффициентами. Переменные x, y здесь легко разделяются, так что общее решение уравнения определяется в следующем виде:

дифференциальный уравнение решение бернулли


Решить уравнение Риккати

Будем искать частное решение в форме:

Подставляя это в уравнение, находим:

Получаем квадратное уравнение для c:

Мы можем выбрать любое значение c. Например, пусть c = 2. Теперь, когда частное решение известно, сделаем замену:

Снова подставим это в исходное уравнение Риккати:

Как видно, мы получили уравнение Бернулли с параметром m = 2. Сделаем еще одну замену:

Разделим уравнение Бернулли на z2 (полагая, что z ? 0) и запишем его через переменную v:

Последнее уравнение является линейным и легко решается с помощью интегрирующего множителя:


Общее решение линейного уравнения определяется функцией

Теперь мы будем последовательно возвращаться к предыдущим переменным. Так как z = 1/v, то общее решение для z записывается следующим образом:

Следовательно,

Можно переименовать константу: 3C = C1 и записать ответ в виде

где C1 ? произвольное действительное число.

Уравнения Бернули

Данное уравнение является уравнением Бернулли с дробным параметром m = 1/2. Его можно свести к линейному дифференциальному уравнению с помощью замены

Производная новой функции z(x) будет равна

Разделим исходное уравнение Бернулли на

Аналогично другим примерам на этой веб-странице, корень y = 0 также является тривиальным решением дифференциального уравнения. Поэтому можно записать:

Заменяя y на z, находим:

Итак, мы имеем линейное уравнение для функции z(x). Интегрирующий множитель здесь будет равен

Выберем в качестве интегрирующего множителя функцию u(x) = x. Можно проверить, что после умножения на u(x) левая часть уравнения будет представлять собой производную произведения z(x)u(x):

Тогда общее решение линейного дифференциального уравнения будет определяться выражением:


Возвращаясь к исходной функции y(x), записываем решение в неявной форме:

Итак, полный ответ имеет вид:

Уравнения с разделяющимися переменными

Найти все решения дифференциального уравнения

Преобразуем уравнение следующим образом:

Очевидно, что деление на ey не приводит к потере решения, поскольку ey > 0. После интегрирования получаем

Данный ответ можно выразить в явном виде:


В последнем выражении предполагается, что константа C > 0, чтобы удовлетворить области определения логарифмической функции.

Найти частное решение уравнения, при

Перепишем уравнение в следующем виде:

Разделим обе части на 1 + ex:

Поскольку 1 + ex > 0, то при делении мы не потеряли никаких решений. Интегрируем полученное уравнение:

Теперь найдем константу C из начального условия y(0) = 0.

Следовательно, окончательный ответ имеет вид:

Уравнение Клеро

Полагая y" = p, его можно записать в виде

Продифференцировав по переменной x, находим:

Заменим dy на pdx:

Приравнивая первый множитель к нулю, получаем:

Теперь подставим это во второе уравнение:

В результате получаем общее решение заданного уравнения Клеро. Графически, это решение представляется в виде однопараметрического семейства прямых. Приравнивая нулю второй сомножитель, находим еще одно решение:

Это уравнение соответствует особому решению дифференциального уравнения и в параметрической форме записывается как

Исключая p из системы, получаем следующее уравнение интегральной кривой:

С геометрической точки зрения, парабола

является огибающей семейства прямых, определяемых общим решением.

Найти общее и особое решения дифференциального уравнения

Введем параметр y" = p:

Дифференцируя обе части уравнения по переменной x, получаем:

Поскольку dy = pdx, то можно записать:

Рассмотрим случай dp = 0. Тогда p = C. Подставляя это в уравнение, находим общее решение:

Графически это решение соответствует однопараметрическому семейству прямых линий.

Второй случай описывается уравнением

Найдем соответствующее параметрическое выражение для y:

Параметр p можно исключить из формул для x и y. Возводя последние уравнения в квадрат и складывая их, получаем:

Полученное выражение является уравнением окружности радиусом 1, расположенным в начале координат. Таким образом, особое решение представляется единичной окружностью в плоскости xy, которая является огибающей для семейства прямых линий.

ЛИТЕРАТУРА

1. Н.С. Пискунов "Дифференциальное и интегральное исчисление", том второй, издательство "Наука", Москва 1985

2. В. Ф. Зайцев, А. Д. Полянин. Справочник по обыкновенным дифференциальным уравнениям. М.: Физматлит, 2001.

3. К.Н. Лунгу, В.П. Норин и др. "Сборник задач по высшей математике", второй курс, Москва: Айрис-пресс, 2007

4. Э. Камке. Справочник по обыкновенным дифференциальным уравнениям. М.: Наука, 1976.

5. Источники информации в интернете.

Дифференциальные уравнения первого порядка, разрешенные относительно производной

Как решать дифференциальные уравнения первого порядка

Пусть мы имеем дифференциальное уравнение первого порядка, разрешенное относительно производной:
.
Разделив это уравнение на , при , мы получим уравнение вида:
,
где .

Далее смотрим, не относятся ли эти уравнения к одному из перечисленных ниже типов. Если нет, то перепишем уравнение в форме дифференциалов. Для этого пишем и умножаем уравнение на . Получаем уравнение в форме дифференциалов:
.

Если это уравнение не является уравнением в полных дифференциалах, то считаем, что в этом уравнении - независимая переменная, а - это функция от . Разделим уравнение на :
.
Далее смотрим, не относится ли это уравнение к одному из, перечисленных ниже типов учитывая, что и поменялись местами.

Если и для этого уравнения не найден тип, то смотрим, нельзя ли упростить уравнение простой подстановкой. Например, если уравнение имеет вид:
,
то замечаем, что . Тогда делаем подстановку . После этого уравнение примет более простой вид:
.

Если и это не помогает, то пытаемся найти интегрирующий множитель.

Уравнения с разделяющимися переменными

;
.
Делим на и интегрируем. При получаем:
.

Уравнения, приводящиеся к уравнениям с разделяющимися переменными

Однородные уравнения

Решаем подстановкой:
,
где - функция от . Тогда
;
.
Разделяем переменные и интегрируем.

Уравнения, приводящиеся к однородным

Вводим переменные и :
;
.
Постоянные и выбираем так, чтобы свободные члены обратились в нуль:
;
.
В результате получаем однородное уравнение в переменных и .

Обобщенные однородные уравнения

Делаем подстановку . Получаем однородное уравнение в переменных и .

Линейные дифференциальные уравнения

Есть три метода решения линейных уравнений.

2) Метод Бернулли.
Ищем решение в виде произведения двух функций и от переменной :
.
;
.
Одну из этих функций мы можем выбрать произвольным образом. Поэтому в качестве выбираем любое не нулевое решение уравнения:
.

3) Метод вариации постоянной (Лагранжа).
Здесь мы сначала решаем однородное уравнение:

Общее решение однородного уравнения имеет вид:
,
где - постоянная. Далее мы заменяем постоянную на функцию , зависящую от переменной :
.
Подставляем в исходное уравнение. В результате получаем уравнение, из которого определяем .

Уравнения Бернулли

Подстановкой уравнение Бернулли приводится к линейному уравнению.

Также это уравнение можно решать методом Бернулли. То есть ищем решение в виде произведения двух функций, зависящих от переменной :
.
Подставляем в исходное уравнение:
;
.
В качестве выбираем любое не нулевое решение уравнения:
.
Определив , получаем уравнение с разделяющимися переменными для .

Уравнения Риккати

Оно не решается в общем виде. Подстановкой

уравнение Риккати приводится к виду:
,
где - постоянная; ; .
Далее, подстановкой:

оно приводится к виду:
,
где .

Свойства уравнения Риккати и некоторые частные случаи его решения представлены на странице
Дифференциальное уравнение Риккати >>>

Уравнения Якоби

Решается подстановкой:
.

Уравнения в полных дифференциалах

При условии
.
При выполнении этого условия, выражение в левой части равенства является дифференциалом некоторой функции:
.
Тогда
.
Отсюда получаем интеграл дифференциального уравнения:
.

Для нахождения функции , наиболее удобным способом является метод последовательного выделения дифференциала. Для этого используют формулы:
;
;
;
.

Интегрирующий множитель

Если дифференциальное уравнение первого порядка не приводится ни к одному из перечисленных типов, то можно попытаться найти интегрирующий множитель . Интегрирующий множитель - это такая функция, при умножении на которую, дифференциальное уравнение становится уравнением в полных дифференциалах. Дифференциальное уравнение первого порядка имеет бесконечное число интегрирующих множителей. Однако, общих методов для нахождения интегрирующего множителя нет.

Уравнения, не решенные относительно производной y"

Уравнения, допускающие решение относительно производной y"

Сначала нужно попытаться разрешить уравнение относительно производной . Если это возможно, то уравнение может быть приведено к одному из перечисленных выше типов.

Уравнения, допускающие разложение на множители

Если удастся уравнение разложить на множители:
,
то задача сводится к последовательному решению более простых уравнений:
;
;

;
. Полагаем . Тогда
или .
Далее интегрируем уравнение:
;
.
В результате получаем выражение второй переменной через параметр .

Более общие уравнения:
или
также решаются в параметрическом виде. Для этого нужно подобрать такую функцию , чтобы из исходного уравнения можно было выразить или через параметр .
Чтобы выразить вторую переменную через параметр , интегрируем уравнение:
;
.

Уравнения, разрешенные относительно y

Уравнения Клеро

Такое уравнение имеет общее решение

Уравнения Лагранжа

Решение ищем в параметрическом виде. Полагаем , где - параметр.

Уравнения, приводящиеся к уравнению Бернулли


Эти уравнения приводятся к уравнению Бернулли, если искать их решения в параметрическом виде, введя параметр и делая подстановку .

Использованная литература:
В.В. Степанов, Курс дифференциальных уравнений, «ЛКИ», 2015.
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Виды дифференциальных уравнений:

▫ Обыкновенные дифференциальные уравнения - уравнения, в которых одна независимая переменная

▫ Дифференциальные уравнения в частных производных - уравнения, в которых независимых переменных две и более

Виды дифференциальных уравнений представлены в таблице 1.

Таблица 1.

Обыкновенные дифференциальные уравнения первого порядка
Название Вид Способ решения
С разделяющимися переменными P(x,y)dx+Q(x,y)dy=0

если P(x,y) и Q(x,y) разлагаются на множители, зависящие каждый только от одной переменной.

f(x)g(y)dx+(x)q(y)dy=0

1.разделить переменные

2.проинтегрировать

3.привести к стандартному виду

y=(x)+c – общее решение

Однородные P(x,y)dx+ Q(x,y)dy=0

где P(x,y), Q(x,y) – однородные функции одного измерения

y’=

(если в функции заменить x=tx, y=ty и преобразовать вернемся исходному уравнению)

1. замена y=tx, тогда

2. привести к уравнению с разделяющимися переменными и решить (см. выше).

3. вернуться к замене, подставить

4. привести к стандартному виду y=

Линейные y’+P(x)y=Q(x)

(y’ и у’ входят в первых степенях не перемножаясь между собой)

а) линейное однородное

б) линейное неоднородное

в) уравнение Бернулли

y’+P(x)y=Q(x)y’’

1. замена y=uv,тогда y’=u’v+v’u

2. u’v+v’u+ P(x) uv= Q(x)

v(u’+P(x)u)+v’u= Q(x) (*)

3. в уравнении (*) приравнять скобку к нулю

u’+P(x)u=0 – c разделенными переменными

4. значение u подставить в уравнение (*)

v’P(x)=Q(x) - c разделенными переменными

5. вернуться к замене

y=P(x)(F(x)+c) – общее решение

Обыкновенные дифференциальные уравнения второго порядка.
Допускающие понижения порядка y’’=f(x) Решаются двойным интегрированием
Линейные однородные второго порядка с постоянными коэффициентами y’’+py+qy=0

где p, q – заданные числа

Всякое Л.О.У.

Второго порядка имеет систему двух линейно независимых частных решений.

которая называется фундаментальной системой решений.

Общее решение есть линейная комбинация частных решений его фундаментальной системы

1.Составить характеристическое уравнение
2.в зависимости от вида корней, фундаментальная система решений имеет вид:
корни

характеристического уравнения

фундаментальная система частных решений общее решение
действительные
Различные

Дифференциальное уравнение (ДУ) - это уравнение ,
где - независимые переменные, y - функция и - частные производные.

Обыкновенное дифференциальное уравнение - это дифференциальное уравнение, которое имеет только одну независимую переменную, .

Дифференциальное уравнение в частных производных - это дифференциальное уравнение, которое имеет две и более независимых переменных.

Слова “обыкновенные“ и "в частных производных" могут опускаться, если ясно, какое уравнение рассматривается. В дальнейшем рассматриваются обыкновенные дифференциальные уравнения.

Порядок дифференциального уравнения - это порядок старшей производной.

Вот пример уравнения первого порядка:

Вот пример уравнения четвертого порядка:

Иногда дифференциальное уравнение первого порядка записывается через дифференциалы:

В этом случае переменные x и y являются равноправными. То есть независимой переменной может быть как x так и y . В первом случае y является функцией от x . Во втором случае x является функцией от y . Если необходимо, мы можем привести это уравнение к виду, в котором явно входит производная y′ .
Разделив это уравнение на dx , мы получим:
.
Поскольку и , то отсюда следует, что
.

Решение дифференциальных уравнений

Производные от элементарных функций выражаются через элементарные функции. Интегралы от элементарных функций часто не выражаются через элементарные функции. С дифференциальными уравнениями дело обстоит еще хуже. В результате решения можно получить:

  • явную зависимость функции от переменной;

    Решение дифференциального уравнения - это функция y = u(x) , которая определена, n раз дифференцируема, и .

  • неявную зависимость в виде уравнения типа Φ(x, y) = 0 или системы уравнений;

    Интеграл дифференциального уравнения - это решение дифференциального уравнения, которое имеет неявный вид.

  • зависимость, выраженную через элементарные функции и интегралы от них;

    Решение дифференциального уравнения в квадратурах - это нахождение решения в виде комбинации элементарных функций и интегралов от них.

  • решение может не выражается через элементарные функции.

Поскольку решение дифференциальных уравнений сводится к вычислению интегралов, то в состав решения входит набор постоянных C 1 , C 2 , C 3 , ... C n . Количество постоянных равно порядку уравнения.Частный интеграл дифференциального уравнения - это общий интеграл при заданных значениях постоянных C 1 , C 2 , C 3 , ... , C n .


Использованная литература:
В.В. Степанов, Курс дифференциальных уравнений, «ЛКИ», 2015.
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.