» »

Поливинилхлорид (ПВХ): основные свойства, область применения. Насколько безопасно горение и плавление пластика различных видов? Полипропиленовые напорные трубы

25.06.2019

Поливинилхлорид (ПВХ) [-СН 2 -СНСl-] n – это высокомолекулярный хлорсодержащий , элементарные звенья в макромолекуле которого в основном соединены по типу «голова к хвосту».

Поливинилхлорид является с температурой стеклования 70-80 °С и температурой вязкого течения 150-200 °С в зависимости от . Степень полимеризации ПВХ промышленных марок колеблется от 400 до 1500 .

Свойства и назначение поливинилхлорида в значительной мере определяются способом его получения. Свойства ПВХ также можно изменять путем химической модификации. Доступность исходного сырья (), относительно несложные методы получения, ценные технические свойства обусловили быстрый рост и большие масштабы его производства.

Пластические массы на основе поливинилхлорида нашли широкое применение в электротехнической и химической промышленности, в строительстве, а также в других областях техники и в быту.

Краткий исторический очерк

В 1835 г. Реньо обнаружил способность газообразного винилхлорида под действием света превращаться в порошок. В 1872 г. полимеризация винилхлорида была исследована Бауманом. А через 40 лет Остромысленский и Клатте предложили использовать фотополимеризацию как промышленный метод получения поливинилхлорида. Позднее были разработаны способы полимеризации винилхлорида под влиянием инициаторов, распадающихся при нагревании на свободные радикалы. Промышленный синтез поливинилхлорида в водной эмульсии был впервые осуществлен в 1930 г. Следующим важным шагом явилась разработка и осуществление в промышленности суспензионной полимеризации винилхлорида. Сравнительно недавно был освоен промышленный метод полимеризации винилхлорида в массе.

Полимеризация винилхлорида

Поливинилхлорид (ПВХ) получают радикальной полимеризацией винилхлорида:

  • в растворе.

В промышленности наибольшее распространение получил суспензионный метод . Инициирование процесса осуществляется свободными радикалами, образующимися при гомолитическом распаде пероксидов или азосоединений. Первичный радикал присоединяется главным образом к метиленовой группе винилхлорида:

В связи со склонностью поливинилхлорида к дегидрохлорированию при температурах выше 75 °С возможна передача цепи на полимер за счет отрыва аллильного хлора от атома углерода, который находится рядом с двойной связью, образовавшейся вследствие частичного дегидрохлорирования полимера :

В результате этой реакции возникают малоактивные аллильные радикалы, вызывающие замедление полимеризации. Для предотвращения дегидрохлорирования и получения ПВХ с теоретическим содержанием хлора желательно вести процесс полимеризации при температурах не выше 70-75 °С .

Радикалы винилхлорида вследствие их высокой активности легко вступают во взаимодействие с различными примесями, содержащимися в даже в незначительных количествах.

Некоторые из примесей, например ацетилен , реагируют как агенты передачи цепи и могут вызывать образование малоактивных радикалов, замедляя полимеризацию. В присутствии других примесей происходит обрыв цепи.

Реакция передачи цепи часто используется для регулирования молекулярной массы полимера. При этом в полимеризационную среду вводят вещества, способные участвовать в передаче цепи, - регуляторы . Регуляторы выбирают так, чтобы образующиеся в результате передачи цепи радикалы были достаточно активными, в противномслучае используемые регуляторы замедляют или даже ингибируют полимеризацию.

Во всех случаях получения поливинилхлорида кислород оказывает отрицательное влияние на ход полимеризации и свойства полимера. Наличие кислорода в системе обусловливает индукционный период процесса полимеризации, уменьшение скорости полимеризации, понижение средней молекулярной массы ПВХ , появление разветвленности, уменьшение термической стабильности ПВХ , ухудшение его совместимости с пластификаторами.

Поэтому содержание кислорода выше 0,0005-0,001% (по отношению к винилхлориду) нежелательно.

При полимеризации винилхлорида выделяется большое количество тепла 1466 кДж/кг , что существенно влияет на технологию получения полимера.

При полимеризации винилхлорида в массе полимер выпадает в осадок в виде твердой фазы вследствие нерастворимости ПВХ в мономере. При этом сначала происходит увеличение скорости реакции от начала процесса до высоких степеней конверсии мономера, а затем ее медленное уменьшение.

Возрастание скорости полимеризации обусловлено образованием твердой фазы. В результате передачи цепи на полимер на выпавших из жидкой фазы макромолекулах образуются активные центры, способные продолжать полимеризацию. Вследствие малой подвижности закрепленных на поверхности полимера растущих цепей скорость обрыва цепи уменьшается, тогда как скорость роста остается высокой из-за большой подвижности молекул мономера. Поэтому с появлением твердой фазы скорость полимеризации возрастает.

На возрастание скорости полимеризации винилхлорида влияет также способность полимера набухать в мономере. Полимеризация протекает в набухших частицах полимера, в которых скорость передвижения макрорадикалов, вероятность их столкновения и бимолекулярного обрыва цепи мала. Подвижность молекул мономера в набухших частицах и скорость роста полимерных цепей остается большой.

Описанное выше явление автокатализа при полимеризации винилхлорида в гетерогенных условиях часто называют гель-эффектом. Однако это явление при полимеризации винилхлорида не аналогично типичному гель-эффекту, наблюдаемому в тех случаях, когда образующийся полимер растворим в собственном мономере.

Свойства поливинилхлорида

Поливинилхлорид представляет собой белый порошок плотностью 1350-1460 кг/м 3 . Молекулярная масса продукта промышленных марок 30000-150000 . Степень кристалличности достигает 10%.

Поливинилхлорид характеризуется значительной полидисперсностью, возрастающей с увеличением степени превращения.

Среднечисловую молекулярную массу ‾М n (близкую по значению к среднемассовой ¯M w ) можно рассчитать по значению характеристической вязкости [η] :

На практике молекулярную массу поливинилхлорида характеризуют константой Фикентчера (К ф ) : K ф =1000k

Коэффициент k определяется по уравнению:

где η отн - относительная вязкость раствора поливинилхлорида в циклогексаноне (обычно 0,5 или 1 г полимера на 100 см 3 растворителя) .

Ниже приводится константа Фикентчера К ф , характеризующая среднюю молекулярную массу поливинилхлорида, полученного различными способами:

Приведенная вязкость (η пр ), константа Фикентчера (К ф ) и среднечисловая молекулярная масса (¯М n) поливинилхлорида связаны следующим образом:

η пр 1,80 1,98 2,20 2,44 2,70
К ф 55 60 65 70 75
М n 50 000 65 000 80 000 90000 100 000

Благодаря высокому содержанию хлора (около 56%) поливинилхлорид не воспламеняется и практически . При 130-150 °С начинается медленное, а при 170 °С более быстрое разложение поливинилхлорида, сопровождающееся выделением хлористого водорода.

Поливинилхлорид нерастворим в мономере (винилхлориде), в воде, спирте, бензине и многих других растворителях. При нагревании он растворяется в тетрагидрофуране , хлорированных углеводородах, ацетоне и др.

Поливинилхлорид обладает хорошими электроизоляционными и теплоизоляционными свойствами, а также высокой стойкостью к действию сильных и слабых кислот и щелочей, смазочных масел и др.

Под действием энергетических и механических воздействий в поливинилхлориде протекают реакции дегидрохлорирования, окисления, деструкции, структурирования, ароматизации и графитизации. Основная реакция, ответственная за потерю полимером эксплуатационных свойств, - выделение НСl .

Для предотвращения разложения в поливинилхлорид вводят стабилизаторы. В качестве антиоксидантов применяют производные фенолов и производные карбамида.

При термической пластификации при 160 °С поливинилхлорид превращается в застывший блок, жесткий и прочный при комнатной температуре.

Поливинилхлорид хорошо совмещается с пластификаторами.

Поливинилхлорид широко используется в технике как антикоррозионный материал. Благодаря хорошим электроизоляционным свойствам он применяется для кабельной изоляции и для других целей.

Поливинилхлорид (ПВХ) – синтетический современный базовый полимер. Это твердое белое вещество, представляющие из себя сыпучий, капиллярный, пористый, хорошо перерабатывающийся порошок (частицы размером 100-200 мкм), который получают с помощью полимеризации винилхлорида в массе, эмульсии или суспензии. По разнообразию способов применения и переработки поливинилхлорид опережает все другие искусственные материалы.

Поливинилхлорид (ПВХ) вырабатывается двух видов:

  • твердый, не пластифицированный (PVC-U) - винипласт (без пластификаторов)
  • мягкий, пластифицированный (PVC-P) - пластикат (с пластификаторами)

ВИНИПЛАСТ

Это жесткий, не пластифицированный листовой поливинилхлорид, содержащий смазывающие добавки (для облегчения переработки) и стабилизаторы (для предотвращения разрушения при эксплуатации и переработке). Изредка в состав винипласта вводятся модификаторы (улучшающие некоторые физические свойства), наполнители (снижающие стоимость; изменяющие физико-механические свойства) и красители (для получения цветных изделий).

Получают путем смешения в смесителях различного типа составляющих частей. После этого смесь или сразу перерабатывают в изделия или сначала получают из нее полуфабрикаты - таблетки, гранулы или в виде листов.

На способ переработки винипласта влияет вид получаемого изделия:

  1. пленочный винипласт получается при каландрирование провальцованной массы
  2. гладкие листы получаются путем прессования пакетов (собранных из пленки) на гидравлических этажных прессах
  3. различные мелкие изделия - путем литья гранул (под давлением) на литьевых машинах или прессованием порошкообразной массы или таблеток на гидравлических вертикальных прессах
  4. волнистые листы, специализированные изделия и трубы - путем выжимания из гранул на специальных шнековых установках
  5. крупные сложные изделия - на формовочных машинах (вакуумное формованием из листов)

Непрозрачный термопластичный материал без запаха, который не горит и хорошо поддается разным способам обработки на простых станках. Он хорошо сваривается при помощи сварочного прутка и легко склеивается любым видом клея, приготовленным на основе перхлорвинила или поливинилхлорида; полученные прочные соединения с легкостью поддаются последующей механической обработке. Винипласт приклеивается к деревянным, бетонным и металлическим поверхностям. Это прекрасный диэлектрик. Винипласт имеет высокую химическую стойкость и в промышленности используется для транспортировки и хранения агрессивных газов и жидкостей, для обеспечения защиты металлической аппаратуры (электролизных ванн), для производства воздуховодов, вентиляторов, лабораторной и химической аппаратуры. Винипласт, благодаря своим высоким физическим свойствам, является конструкционным материалом, который широко применяется в строительстве (стеклопакеты, трубы, фитинги, погонаж и др.) и машиностроении. Винипласт не растворяется в этиловом, метиловом спирте, глицерине, высших и алифатических многочисленных алкоголях, растительных и смазочных маслах, алифотических углеводородах.

ПЛАСТИКАТ

Это эластичный поливинилхлорид, содержащий до пятидесяти процентов пластификатора (себацинаты, фталаты, трикрезилфосфат и др.), а это значительно упрощает его переработку в различные изделия и делает шире диапазон его практического применения (пленка, клеенка, шланги, линолеум, искусственная кожа и др.).

Как правило пластикат содержит (в массовых долях): полимер- 100, пластификатор - 5-20, стабилизатор -2-5 и иногда краситель - 0,1-3. Окрашенный или неокрашенный, он выпускается в виде пленок, лент, гранул, листов и т.д.

Перерабатывается пластикат тремя способами:

  1. каландрование или литье под давлением - применяется для уплотнения листов и выравнивания их поверхности
  2. вальцевание - при нем, вращающиеся в противоположные стороны, валки захватывают жгуты и слои ПВХ, создавая повышенные температуру и давление в зоне вальцов, затем их деформируют и склеивают (термически). В результате всего этого смола пвх вальцуется с пленкой из винипласта или другим вторичным или остаточным сырьем поливинилхлорида, которое остается после процесса экструзии пленки. Вальцовка помогает непрерывному деформированию и ориентировке волокон поливинилхлорида вдоль направления вальцевания, а это придает ей улучшение механических качеств.
  3. экструзией - когда мола пвх пропускается с предварительным разогревом через экструдер и получаются листы, прутки, гранулы.

Пластикаты листовые служат для защиты промышленных помещений и химических объектов, для покрытия транспорта, спец. оборудования и сооружений, связанных с радиацией (свалки, полигоны для отходов, АЭС, транспорт); для защиты от коррозии конструкций из металла, электролизных травильных ванн. Также пластикат используется как прокладочный и трудногорючий материал. Он - влагонепроницаемый; атмосферо-, масло-, бензо- и огнестойкий; не реагирует на действие щелочей и кислот. Толщина от 1 до 6мм.

И пластикат , по химическому составу, являются термопластами и при повышении температуры обладают быстрым снижением своих механических свойств. Это обусловлено тем, что их молекулярное строение - линейное и молекулы друг с другом имеют малую связь, которая снижается при нагревании. Поливинилхлорид подлежит пятикратной переработке и при этом не теряет своих эксплуатационных качеств.

(ПВХ) относится к термопластичным синтетическим материалам. В зависимости от условий полимеризации образуются продукты различной степени полимеризации с различными физико-химическими свойствами.

Материалы на основе ПВХ вырабатываются двух видов:

– с применением пластификатора (пластифицированный ПВХ);

– без применения пластификатора (не пластифицированный ПВХ).

Другие обозначения:
FPVC, PVC-F, PVC-P (пластифицированный);
RPVC, PVC-R, PVC-U (непластифицированный).

По внешнему виду товарный ПВХ представляет собой порошок белого цвета, без вкуса и запаха. ПВХ достаточно прочен, обладает хорошими диэлектрическими свойствами. Химическая формула ПВХ (-СН2-CHCl-)n , где n – степень полимеризации.

ПВХ не растворим в воде, устойчив к действию кислот, щелочей, спиртов, минеральных масел, набухает и растворяется в эфирах, кетонах, хлорированных и ароматических углеводородах. ПВХ совмещается со многими пластификаторами (например фталатами, себацинатами, фосфатами), стоек к окислению и практически не горюч. Поливинилхлорид обладает невысокой теплостойкостью, при нагревании выше 100 ºС заметно разлагается с выделением HCL. Для повышения теплостойкости и улучшения растворимости ПВХ подвергают хлорированию.

Таблица №1: Основные физико-химические свойства ПВХ

Экологические показатели

ПВХ слаботоксичное вещество. Продукты разложения вызывают раздражение верхних дыхательных путей и слизистых оболочек глаза. ПДК в воздухе производственных помещений б мг/м3. Осевшая пыль пожароопасна. При нагревании выше 150 °С начинается деструкция полимера с выделением хлористого водорода и окиси углерода, вредно действующих на организм человека.

ПВХ аморфный материал, свойства которого сильно зависят от метода получения. ПВХ получают суспензионным (suspension), эмульсионным (emulsion) методами, полимеризацией в массе - блочным методом (mass, bulk).

Суспензионный ПВХ или ПВХ С (PVC-S) имеет сравнительно узкое молекулярно-массовое распределение, малую степень разветвленности, более высокую степень чистоты, низкое водопоглощение, хорошие диэлектрические свойства, лучшую термостойкость и светостойкость.

Эмульсионный ПВХ или ПВХ Е (PVC-E) характеризуется широким молекулярно-массовым распределением, высоким содержанием примесей, высоким водопоглощением, худшими диэлектрическими характеристиками, худшей термостойкостью и светостойкостью.

Максимальная температура длительной эксплуатации: 60 оС. FPVC (пластифицированный) выдерживает охлаждение до -60 -3 оС, RPVC - до -15 оС. Температура стеклования: 70 - 105 оС. Имеет широкий разброс механических характеристик. FPVC - эластичный материал. RPVC имеет высокую прочность и жесткость.

Материал на основе суспензионного ПВХ имеет хорошие диэлектрические характеристики (но хуже, чем у PE, PP, PS).

RPVC (непластифицированный) имеет высокую химическую стойкость, стоек к действию бензина, масел, разбавленных кислот и щелочей. Растворяется в при нагревании в дихлорэтане, хлорбензоле, тетрагидрофуране. FPVC отличается меньшей химической стойкостью.

Впервые ПВХ был получен в 1972 году Бауманом при действии солнечного света на винилхлорид. Промышленный синтез ПВХ был осуществлен в 1930 году в Германии.

Поливинилхлорид или ПВХ - современный синтетический полимер, относящийся к числу так называемых базовых полимеров. В качестве сырья для ПВХ используют хлор - 57% и нефть - 43%. Таким образом ПВХ меньше, чем другие базовые полимеры зависит от нефтяного сырья. Это играет очень важную роль в его ценообразовании.

Основным сырьем для производства ПВХ служат хлор, получаемый путем электролиза раствора поваренной соли, и этилен. Процесс производства ПВХ можно вкратце описать следующим образом: в процессе электролиза поваренная соль, растворенная в воде, под воздействием электрического заряда разлагается на хлор, каустическую соду и водород. Отдельно, из нефти или газа с помощью процесса, называемого крекингом, производят этилен. Следующим этапом является соединения этилена и хлора. В результате получают дихлорид этилена, из которого потом про¬изводят мономер винилхлорида, являющийся базовым элементом в производстве поливинилхлорида (ПВХ). В процессе полимеризации молекулы мономера винилхлорида объединяются в длинные цепочки ПВХ. Получающийся ПВХ-гранулят тоже является, по сути, сырьем - к нему добавляют различные вещества для придания материалу самых разнообразных свойств. Именно это позво¬ляет находить применение для ПВХ почти в каждой сфере нашей повседневной жизни.

ПВХ был одним из первых полимеров, получивших широкое коммерческое распространение, и на сегодня он является одним и самых популярных. Сегодня ПВХ занимает второе место после полиэтилена по потреблению среди синтетических полимеров. ПВХ является хорошим примером фантастической универсальности полимеров. Из ПВХ производят буквально все - от медицинских емкостей для крови до детских игрушек, изоляционных материалов и оконных профилей.

В промышленности полимеризация ПВХ производится суспензионным, блочным (полимеризация в массе) и эмульсионным методами.

Суспензионный ПВХ перерабатывается в изделия вальцеванием (каландрованием), экструзией, литьем под давлением и прессованием ПВХ, полученный в массе или суспензии, используется для производства жестких, а также полумягких и мягких, так называемых пластифицированных, пластических масс.

Эмульсионный ПВХ перерабатывается в изделия прессованием, литьем под давлением, вальцеванием, экструзией, а также в мягкие изделия через пасты (пластизоли). Эмульсионный поливинилхлорид

Массовый ПВХ применяется для изготовления различных изделий вальцеванием, экструзией и прессованием.

Доля эмульсионного ПВХ постепенно уменьшается, хотя он находит применение для получения пластизолей. Растет доля суспензионного ПВХ, применяемого для изготовления труб, листов, пленки, бутылей, оконных рам и других изделий. Доля суспензионного ПВХ в общем объеме производства составляет 75-80 %.

Сферы применения ПВХ

ПВХ используется в медицине уже более 50 лет. При этом его потребление в этой сфере постоянно растет. Толчком к широкому применению ПВХ в этой области стала насущная потребность заменить резину и стекло предварительно стерилизованными предметами одноразового (и не только) использования. Со временем ПВХ стал наиболее популярным полимером в медицине благодаря химической стабильности и инертности. Продукция из него крайне разнообразна и легко производима. Медицинские продукты из ПВХ могут быть использованы внутри человеческого тела, легко стерилизуются, не трескаются и не протекают.

При всем предубеждении против полимеров вообще и ПВХ в частности, этому материалу удалось пройти бесчисленное количество тестов, результатом которых стало принятие ПВХ большинством зравоохранительных организаций мира.

Вот далеко не полный перечень медицинской продукции, производимой из ПВХ: контейнеры для крови и внутренних органов, катетеры, трубки для кормления, приборы для измерения давления, хирургически шины, блистер-упаковка для таблеток и пилюль.

Основные преимущества ПВХ, позволившие этому материалу стать наиболее применимым в медицине.

Одним из основных требований к медицинской продукции является ее соответствие токсикологическим стандартам. Принятие ПВХ к использованию в медицине странами Евросоюза является свидетельством его полной медицинской безопасности. Материал, используемый в медицине, должен обладать следующим важным свойством -при контакте с разнообразными жидкостями его композиция должна оставаться неизменной, именно таким материалом является ПВХ. Когда полимерный материал контактирует с тканью или кровью пациента, крайне важен показатель химической совместимости. ПВХ характеризуется высокой биосовместимостью которая постоянно растет благодаря новым разработкам в технологии его производства. Благодаря своим физическим характеристикам продукты из ПВХ могут обладать высокой про¬зрачностью, продукции из ПВХ может быть придана любая цветовая окраска. Продукция из ПВХ также отличается высокой гибкостью и прочностью даже при изменяющихся внешних условиях (например, температуре). ПВХ легко совместим с практически всеми фармацевтическими продуктами. Он также устойчив к воде и химическим реакциям. Из ПВХ легко производить упаковку любой формы, будь то трубы, гибкая или жесткая упаковка.

ПВХ - один из самых дешевых материалов. Это также играет важную роль при выборе материала для применения в производстве медицинской продукции.

ПВХ в транспорте

ПВХ широко используется в качестве материала для производства автотранспорта. В этой области он является вторым по популярности полимером (после полипропилена).

В автомобилестроении ПВХ используется для производства покрытий, уплотняющих материалов, кабельной изоляции, приборных и дверных панелей, подлокотников и т.д.

Благодаря использованию ПВХ современные автомобили более живучи. Средний срок жизни современного автомобиля - 17 лет. Еще в 70-х годах прошлого века эта цифра не превышала 11 лет. Увеличение срока эксплуатации автомобиля означает реальную экономию природных ресурсов (если машины служат дольше, значит производить их можно меньше).

Использование в автомобилестроении полимеров вообще и ПВХ в частности ведет к снижению затрат топлива. Так как полимеры, не уступая традиционным материалам (металлу, стеклу) по прочностным свойствам, весят меньше – без ущерба для качества автомобиля снижается его вес, а, следовательно, и количество топлива, необходимое для работы двигателя.

Использование ПВХ также повышает безопасность машин. ПВХ применяется в производстве по¬душек безопасности, защитных панелей и проч., предохраняющих пассажиров от травм при авариях. Кроме того, устойчивость ПВХ к действию огня также повышает безопасность автомобиля.

Эффективно использование ПВХ в дизайнерских целях. Как уже указывалось выше, одним из свойств этого полимера является возможность производства из него продукции любой формы. Это дает возможность дизайнерам улучшать интерьер салона автомобиля. Материалам из ПВХ может быть придана привлекательность, недавние разработки позволили создавать материалы, на ощупь напоминающие натуральную кожу. Использование ПВХ для отделки салона снижает шум во время движения.

Использование ПВХ приводит к значительной экономии средств - ПВХ дешевле традиционных материалов, не уступая им в качестве.

Сегодня в Западной Европе каждый новый автомобиль содержит примерно 16 кг ПВХ. Если взять ориентировочные цены на ПВХ, произ¬водственные затраты и цены на автомобили, это означает, что использование ПВХ в автомобилестроении Западной Европы может быть оценено в 800 млн. евро. в год. Автомобильный рынок Западной Европы - примерно 35% мирового, следовательно в целом по миру использование ПВХ в автостроение может быть оценено в почти 2,5 млрд. евро.

ПВХ в строительстве

Из всех полимеров именно ПВХ имеет наиболее широкое применение в строительстве. В Европе в этой отрасли используется более 50% всего производимого ПВХ, в США - более 60%. И снова таки основными преимуществами ПВХ являются все те же способности производства разнообразных видов продукции с различными свойствами. Главными конкурентами ПВХ являются глина и дерево.

Главные качества ПВХ в строительстве: износоустойчивость, механическая прочность, жесткость, небольшая масса, устойчивость к коррозии, химическому, погодному и температурному воздействию. ПВХ - отличный огнеупорный материал. Он с трудом поддается возгоранию. И прекращает гореть и тлеть сразу же после того, как исчезает источник высокой температуры. Основная причина - высокое содержание хлора. Это способствует повышению пожарной безопасности построенных объектов. ПВХ не проводит электричество и, таким образом, идеален в качестве изоляционного материала. Основной чертой строительных материалов из ПВХ является их долговечность. 85% всех строительных материалов из ПВХ используются для долгосрочных сооружений. Более 75% труб, произведенных из ПВХ, имеют срок службы более 40 лет (потенциал новых разработок в этой области увеличивает этот срок до 100 лет!). Аналогичные показатели у более чем 60% сделанных из и кабельной изоляции.

Опять же ПВХ существенно дешевле конкурирующих материалов. Стройматериалы из ПВХ легче, чем стройматериалы из бетона, железа и стали. Это вновь приводит нас к мысли об экономической выгоде - на обработку продукции из ПВХ затрачивается меньше энергии, меньше транспортных услуг (а, следовательно, и топлива). Долговечность материала также позволяет экономить - трубы, окна и т.д. приходиться менять реже. Теплоизоляционные свойства ПВХ позволяют затрачивать меньше энергии на отопление помещений.

ПВХ в игрушках

Широко используется ПВХ и в производстве детских . Перечень (далеко неполный) игрушек, производимых из ПВХ: куклы, утята для ванной, надувные пляжные игрушки, «лягушатники», мячи и т.д. В целом можно сказать, что в производстве почти всех «мягких» игрушек используется ПВХ.

ПВХ в потребительских товарах

Из ПВХ производятся многие потребительские товары. Например, мебель (для нее используется жесткий ПВХ), напольные покрытия (гибкий ПВХ), обувь, кредитные и телефонные карточки, спортивное оборудование и оснащение (мячи, экипировка), одежда, сумки, рюкзаки и т.д.

ПВХ в упаковке

Приведенные выше многочисленные и разнообразные свойства ПВХ делают его очень привлекательным материалом для производства упаковки. В Европе каждый год не менее 250 тыс. тонн ПВХ используется для производства упаковочных материалов. Основные сферы применения: жесткая пленка (51%), бутылки (35%), гибкая пленка (11%) и бутылочные крышки (3%). В качестве примеров использования ПВХ в упаковке можно привести туалетные принадлежности, тюбики для зубной пасты, мобильные телефоны и аксессуары для них.

6452 0 0

Виды пластиковых труб: знакомимся, кто есть кто

Разрешите представить

Вначале я оглашу весь список приглашенных на наше рандеву:

  • Из непластифицированного поливинилхлорида изготавливается наиболее массовая и недорогая серая канализационная труба для монтажа внутренней канализации;
  • Оранжевая труба (для наружных работ) отличается от серой повышенной устойчивостью к деформирующим нагрузкам. Ей предстоит выдерживать давление грунта, ходящих по его поверхности людей и проезжающих машин;

Напорные полиэтиленовые трубы для холодной воды — черные с синей полосой.

  • Сшитый полиэтилен PEX — полимер, который благодаря химической или электроннолучевой обработке приобрел поперечные связи между молекулами — разительно отличается от обычного пластика прочностью и термостойкостью. Он может использоваться на ГВС и отоплении;
  • Термостабилизированный полиэтилен PERT отличается от сшитого лишь отсутствием памяти формы и другими способами монтажа соединений. Он тоже массово используется на горячей воде;
  • Канализация из ПНД и менее прочного ПВД (полиэтилена низкого и высокого давления соответственно) ограниченно использовалась в строительстве на излете советской эпохи. Сейчас эти трубы, насколько мне известно, не продаются, но их все еще можно встретить во многих домах постройки 80 — 90 годов;
  • Трубы из металлопластика тоже применяются на холодной, горячей воде и . Между слоями PEX или PERT вклеена тонкостенная алюминиевая трубка, увеличивающая прочность трубопровода по отношению к внутреннему давлению;
  • Полипропилен известен в первую очередь как материал для водопроводов и систем автономного отопления. Термостойкие трубы из него могут постоянно работать при температурах вплоть до максимальных, согласно действующим в РФ СНиП для любой инженерной системы дома 95С;
  • Из полипропилена изготавливают и раструбные трубы для канализации . Как правило, линейкой размеров они не отличаются от ПВХ и полностью совместимы с ними. Исключение — некоторые экзотические разновидности «бесшумной» канализации, где за счет увеличенной толщины стенок и введения минерального наполнителя трубы обладают улучшенными акустическими характеристиками.

Некоторые разновидности труб я намеренно пропустил. Скажем, изделия из АБС (акрилонитрил-бутадиен-стирола) ни разу не попадались мне в магазинах сантехники вживую, поэтому я не вижу смысла описывать отсутствующий на местном рынке товар. Профильные вентиляционные трубы тоже обойдутся без нашего внимания — просто потому, что они не используются в монтаже сантехники.

А теперь поближе

Время шапочного знакомства кончилось. Теперь я постараюсь дать каждому виду труб детальную характеристику и описать ключевые особенности материала, его потребительские свойства и способы монтажа.

Канализация ПВХ

Пластиковые ПВХ трубы можно без ограничений использовать при прокладке бытовой самотечной канализации.

  • Рабочая температура, заявленная для них, составляет 60 С с возможностью кратковременного нагрева до 80. С учетом того, что стекающая в ванну или раковину горячая вода на пути до гребенки (внутриквартирной канализации) успевает отдать существенную часть тепла, такой термостойкости хватает с запасом;
  • Пластик стоек к любым агрессивным средам, включая концентрированные растворы кислот и щелочей.

Недостатки ПВХ:

  • Хрупкость. Трубопровод нельзя монтировать внатяжку или с изгибом;
  • Склонность к провисанию под собственной тяжестью. Впрочем, это характерно для всех труб из пластика;
  • Шум. Если стояк из ПВХ объединяет несколько квартир, вы будете в курсе состояния желудка всех ваших соседей сверху. Тонкие стенки трубы резонируют, усиливая звук.

Особенности монтажа:

  1. Труба крепится на горизонтальных участках с шагом не больше десяти диаметров , а на вертикальных — под каждым раструбом;
  1. Для гашения шума используется максимально частый крепеж хомутами с резиновыми прокладками и внешняя шумоизоляция рулонными утеплителями или скорлупой;
  2. Резать трубу по размеру удобнее всего обычной болгаркой;
  3. С торца отрезанной по месту трубы обязательно удаляются заусенцы, которые в дальнейшем могут цеплять мусор, и снимается наружная фаска . Фаска поможет вставить трубу в раструб с кольцевым уплотнителем;
  4. Чтобы облегчить сборку раструбного соединения, используйте силиконовую смазку или жидкое мыло.

Напорные трубы ПВХ

Как и канализация, напорные трубопроводы прокладываются без изгибов и деформаций. Все повороты выполняются за счет фитингов.

Ключевые особенности материала:

  • Непереносимость им высоких температур. Кратковременный максимум — 65 С;
  • Низкие температуры ПВХ тоже переносит плохо. Труба полностью утрачивает эластичность и становится еще более хрупкой, чем обычно. Производители рекомендуют при зимних температурах ниже -15С прокладывать трубопроводы в грунте с дополнительным утеплением;
  • Материал служит до 50 лет при условии защиты от ультрафиолета;
  • Рабочее давление зависит от SN трубы (отношения диаметра к толщине стенки) и принимает значения PN 6, PN 10 и PN 16 (6 — 16 атмосфер соответственно).

На мой взгляд, эти пластиковые трубы для воды — не лучший выбор. Полиэтилен при не намного худшей термостойкости перекрывает потребительские свойства ПВХ по всем статьям.

Напорные трубы с раструбами и кольцевыми уплотнителями монтируются так же, как канализационные: труба запрессовывается в раструб со значительным усилием. При этом раструбы должны быть надежно зафиксированы во избежание самопроизвольной расстыковки.

Клеевые раструбы монтируются так:


Напорные трубы из полиэтилена

Они представляют собой идеальный, абсолютно безупречный материал для:

  • Магистралей холодного водоснабжения;
  • Дачных водопроводов;
  • Вводов ХВС в частный дом.

Аргументы? Сколько угодно:

  1. В условиях защиты от ультрафиолета срок службы полиэтилена составит не менее 50 лет. Для сравнения — стальные трубы на холодной воде нередко дают течь уже через десятилетие;
  2. Полиэтилен — диэлектрик. Впрочем, как и все прочие полимеры. Стало быть, на присоединенных к нему участках водопроводных систем можно не опасаться электрохимической коррозии;
  3. Этот полимер — один из наиболее стойких к кислотам и щелочам. Достаточно сказать, что емкости и пробки для хранения концентрированных кислот изготавливаются именно из него;
  1. Полимер эластичен и вязок, благодаря чему прекрасно переносит ударные нагрузки;
  2. Мало того: он сохраняет эластичность в самые сильные морозы . Для вас это означает, что даже при замерзании ввода в дом труба не порвется: она немного растянется под воздействием расширяющегося льда и после оттайки вернется к прежнему размеру;
  3. Эластичность позволяет укладывать трубопровод с плавными изгибами , что недопустимо для прочих пластиков и тем более стальных или чугунных магистралей.

Диаметр полиэтиленовых напорных труб по ГОСТ 18599-2001 варьируется от 10 до 1600 мм. Рабочее давление определяется уже знакомым нам SN и может принимать значения до 25 кгс/см2.

Для монтажа используются:

  • Стыковая сварка . Нагретые до температуры плавления торцы смежных труб сдавливаются с усилием 1,5 кгс/см2 до схватывания расплава. Прочность такого соединения составляет примерно 80% прочности цельного участка;

Варить стыковой сваркой можно трубу с толщиной стенок от 4 мм.

  • Электромуфтовая сварка . На раструбный фитинг с заложенной в него нагревательной спиралью подается питание. При разогреве нагревателя поверхности трубы и фитинга надежно сплавляются.

Этот метод позволяет монтировать соединения в труднодоступных местах вроде бетонных лотков и колодцев. Его главный недостаток — высокая цена фитингов и автоматического прибора для их сварки;

  • Если нужно сделать соединение труб большого диаметра разъемным, они снабжаются буртиками и фланцами ;

На фото — полиэтиленовый фланец под приварку.

  • При небольшом диаметре и умеренных требованиях к надежности (например, при монтаже дачного водопровода или ввода ХВС в частный дом) для монтажа могут использоваться компрессионные фитинги . Соединение монтируется своими руками, без инструмента.

PEX, PERT

Несмотря на разницу в способах монтажа и физических свойствах, для обоих видов модифицированного полиэтилена характерны примерно одинаковые рабочие параметры и области применения.

Трубы применяются преимущественно для коллекторной разводки отопления и водоснабжения, а также для укладки в водяной теплый пол . В массовой продаже присутствуют всего два типоразмера — 16 и 20 мм.

Как монтируются соединения трубопроводов?

  • Фитинг для PEX — обычный штуцер-елочка с надвинутой на трубу сверху гильзой. Конец трубы растягивается экспандером и надевается на штуцер. Дальше в дело вступает молекулярная память полимера: через несколько секунд он надежно обжимает трубу. Остается лишь зафиксировать ее гильзой, исключив рассоединение при рывке;
  • На PERT применяются обжимные фитинги с штуцером и накидной гайкой, а также раструбные фитинги под .

Полиэтиленовая канализация

Способы монтажа этих канализационных труб полностью идентичны тем, что применяются с канализацией ПВХ. Увы, полной совместимости размеров между черной полиэтиленовой канализационной трубой и ПВХ нет: размеры раструбов различаются на пару миллиметров. Проблема, впрочем, легко решается нагревом раструба или установкой переходника.

Полиэтиленовую канализацию нельзя резать болгаркой. Края оплавляются и делаются неровными.

Потребительские свойства полиэтилена заметно привлекательнее, чем у ПВХ:

  • Благодаря эластичности и большей толщине стенок (до 5,5 мм у ПВД ПЭ 32 при диаметре 100 мм) стояки куда менее шумные;
  • Труба может монтироваться с плавными изгибами, не боится ударов и разморозки.

Металлопластик

Металлополимерные трубы появились на отечественном рынке в 90-е годы прошлого века и сразу заслужили симпатию российского потребителя. Красивые, долговечные и предельно простые в монтаже, они казались чудом инженерной мысли. К несчастью, быстро наступило разочарование: соединения на компрессионных фитингах давали течь уже в первый — второй сезон эксплуатации, после нескольких циклов нагрева и охлаждения.

  1. Металлопластик можно использовать только в автономных системах. В ЦО он может быть поврежден гидроударом, при котором давление на фронте потока существенно превышает критические для нашего материала 10 атмосфер ;
  2. Если уж монтировать металлополимерные трубы на отоплении и ГВС, то только на пресс-фитингах (под обжимку клещами).

Именно с последним мнением я не согласен. Дело в том, что основная причина течей на компрессионных фитингах — неправильный монтаж без снятия фаски, торцовки трубы и, главное, ее калибровки , устраняющей приобретенную при сматывании в бухту овальность.

Что происходит, если пропустить эти операции и просто натянуть на штуцер фитинга отрезанную ножовкой трубу?

Резиновые кольца должны обеспечивать герметичность при тепловом расширении трубы.

  • При затяжке накидной гайки разрезное кольцо обожмет трубу не на уплотнительных кольцах, а на латунном штуцере ;
  • В результате пережатый полиэтилен будет выдавливаться из места соединения . При каждом нагреве с сопровождающим его тепловым расширением деформация внутреннего слоя трубы будет усиливаться, пока она не даст течь.

Чтобы избежать этого, достаточно:

  • Резать трубу специальным труборезом для металлопластика;
  • Всегда снимать внутреннюю фаску;
  • Всегда калибровать край трубы .

Полипропиленовая канализация

Никаких отличий от ПВХ, кроме несколько большей термостойкости (90 градусов против 60), у нее нет. Инструкция по монтажу тоже полностью повторяет таковую для поливинилхлорида. Полипропиленовая канализация несколько дороже ПВХ; ее покупка оправдана лишь в тех случаях, когда в силу каких-то причин вам предстоит сбрасывать больше количество горячей воды.

Полипропиленовые напорные трубы

Полипропилен массово используется на ХВС, ГВС и отоплении. Образцом для исследования нам послужит труба Wavin Ecoplastik.

В русскоязычном сегменте Интернета можно встретить неправильное название этого материала — » полипропиленовые трубы из экопластика «.

  • Рабочее давление для разных линеек составляет от 10 до 20 кгс/см2 при температуре 20С. К слову, большая часть производителей предлагает трубы PN25 с рабочим давлением в 25 атмосфер;
  • Wavin предлагает трубу без армирования для нужд ХВС, а также армированную алюминиевой фольгой, стекловолокном и базальтовым волокном трубу для отопления и ГВС;
  • Максимальная эксплуатационная температура ограничена 90 градусами. Любопытно, что допустимое рабочее давление при 90 С снижается до 6 — 8 атмосфер в зависимости от типа армирования;
  • Армированные трубы отличаются меньшим удлинением при нагреве.

Полипропилен — идеальный материал для ХВС, а также автономных систем ГВС и отопления. В централизованных системах я рекомендую ставить его только после отсекающих вентилей и ни в коем случае не использовать материал при замене стояков. Гидроудар или превышение расчетной температуры, нередкие в таких системах, с большой вероятностью приведут к аварии.

Для монтажа труб используется раструбная сварка при температуре 260 градусов: труба и фитинг оплавляются, совмещаются друг с другом и фиксируются до застывания расплава. Армирование фольгой предварительно удаляется из поля сварки зачистным инструментом : если внутренний слой полипропилена не сварится с фитингом, это может привести к расслоению трубы.

Длинные прямые участки трубопровода ГВС и отопления снабжаются дополнительными изгибами для компенсации расширения при нагреве. Соединения необслуживаемые и могут укладываться в стяжки и штробы.

Заключение

Надеюсь, что мой несколько поверхностный обзор помог читателю удовлетворить свою любознательность. Как обычно, некоторое количество дополнительных материалов можно изучить, просмотрев видео в этой статье. Я буду признателен вам за дополнения и комментарии.

Успехов, камрады!

Поливинилхлорид (ПВХ) - универсальный термопластичный полимер, получаемый полимеризацией винилхлорида. Сырьем для производства винилхлорида являются поваренная соль и нефтепродукты.

ПВХ - продукт крупнотоннажного химического производства. Мировое потребление ПВХ около 25 млн. тонн в год. ПВХ имеет очень широкий спектр использования - сайдинги, элементы кровли, профили пластиковых окон, водопроводные трубы, грампластинки, кабельная продукция, декоративные и технические пленки и пластики, машиностроительные и электротехнические детали, текстильные и технические волокна, напольные покрытия, товары для спорта и отдыха, игрушки, медицинские изделия, тара и упаковка и многое другое.

Химическая формула поливинилхлорида: (-CH 2 -CHCl-) n . Пространственная структура молекулы ПВХ показана на схеме.

Международные краткие обозначения:

  • RPVC, PVC-R, PVC-U, uPVC - непластифицированный, т.е. жесткий ПВХ, применяющийся в конструкционных целях,
  • FPVC, PVC-F, PVC-P -пластифицированный, например - при помощи фталатов, применяющийся в кабельной промышленности, при изготовлении шлангов, линолеума, игрушек и т.п. и обладающий большей или меньшей эластичностью. Пластифицированные формы ПВХ легче поддаются литью и экструзии.

На рынке ПВХ продается под большим количеством фирменных названий.

Ориентировочные свойства ПВХ приведены в таблице.

Наименования показателей Значения показателей
Насыпная плотность суспензии 0,450 -700 кг/куб. м
Плотность при 20°С 1,35 - 1.43 г/см3
Температура текучести 180 - 220 ° и выше
Температура стеклования 78 - 105 °С
Теплопроводность 0,15 - 0,175 вт/(мхК)
Удельная теплоёмкость 1- 2,14 кдж/(кгхК)
Температурный коэффициент линейного расширения 6х10-7 - 8х10-7 °С-1
Температурный коэффициент объёмного расширения (25 - 50°С) 3х10-8 - 4х10-8
Теплостойкость по Мартенсу 50 - 80 °С
Водопоглощение: за 24 ч. - 0,4-0,6 % (г/м2)
за 1000ч. - 4 г/м2
Прочность: при растяжении 40-60 Мн/м2
при сжатии 78-160 Мн/м2
при изгибе 80-120 Мн/м2
Модуль упругости 3-4 Гн/м2
Ударная вязкость по Изод 2-10 кдж/м2
Твёрдость по Бриннелю 130-160 Мн/м2
Предел текучести 10-30 Мн/м2
Относительное удлинение 5-100%
Источник http://www.big-av.ru

Диапазон эксплуатационных температур изделий из ПВХ от - 50 до + 80 °С. Изделия из ПВХ хорошо противостоят внешним воздействиям. Подобно древесине поливинилхлорид гидрофилен, поэтому он хорошо совмещается с древесным наполнителем и пигментами.

Характер связей между элементарными звеньями допускает несколько вариантов построения молекулярной цепи, что на практике, при промышленном получении поливинилхлорида, приводит к малой регулярности (синдиотактичности) его макромолекул: в одной макромолекуле реализуются сразу несколько вариантов связей элементарных звеньев, регулярные последовательности элементарных звеньев не создаются и промышленные образцы имеют невысокую степень кристалличности.

Поливинилхлорид характеризуется очень широким молекулярно-массовым распределением (полидисперсностью). Степень полимеризации для различных фракций полимера одной и той же марки может изменяться в несколько десятков раз (от 100 до 2500).

Поливинилхлорид устойчив к действию влаги, кислот, щелочей, растворов солей, промышленных газов (например, NO2, Cl2), бензина, керосина, жиров, спиртов. Нерастворим в собственном мономере. Ограничено растворим в бензоле, ацетоне. Растворим в дихлорэтане, циклогексаноне, хлор- и нитробензоле. Физиологически безвреден.

Чистый поливинилхлорид представляет собой роговидный материал, который трудно перерабатывается. Поэтому обычно его смешивают с пластификаторами. Свойства конечного продукта варьируются от жесткого до очень гибкого пластика в зависимости от процента добавленного пластификатора, который может достигать до 30% массы.

Свойства ПВХ можно модифицировать смешением его с другими полимерами или сополимерами. Так, ударная прочность повышается при смещении ПВХ с хлорированным полиэтиленом, хлорированным или сульфохлорированным бутилкаучуком, метилвинилпиридиновым или бутадиен-нитрильным каучуком, а также с сополимерами (стиро-акрилонитрил или бутадиен-стирол-акрилонитрил).

В зависимости от способа полимеризации ПВХ выпускается в трех различных формах:

  • блочный,
  • в виде суспензии,
  • в виде эмульсии.

На основе поливинилхлорида получают:

  • жесткие формы - винипласты,
  • мягкие формы - пластикаты,
  • пластизоли (пасты),
  • поливинилхлоридное волокно.

Винипласт используется как жесткий конструкционный материал, применяемый в строительстве в виде погонажа, профилей, труб. Пластикат применяется для изготовления пленок, шлангов, клеенки, линолеума.

Условное обозначение отечественного эмульсионного поливинилхлорида, выпускаемого в соответствии с ГОСТ 14039-78 и представляющего собой продукт эмульсионной полимеризации винилхлорида, состоит из наименования продукта - ПВХ и следующих обозначений:

  • способа полимеризации - Е (эмульсионная);
  • способа переработки через пасты (для пастообразующих марок) - П;
  • нижнего предела диапазона величины константы Фикентчера К, которая характеризует его молекулярную массу - первые две цифры;
  • показателя насыпной плотности - третья цифра: 0 - не нормируется, 5 - от 0,45 до 0,60 г/см3;
  • показателя остатка на сите с сеткой № 0063 - четвертая цифра: 0 - не нормируется; 2 - до 10%;
  • применяемости эмульсионного поливинилхлорида: М – для переработки в пластифицированные изделия; Ж – для переработки в жесткие изделия; С – для переработки через средневязкие пасты.

После обозначения марки эмульсионного поливинилхлорида указывают сорт и ГОСТ.

Пример условного обозначения эмульсионного поливинилхлорида, изготовленного по способу эмульсионной полимеризации, с величиной К от 70 до 73, с насыпной плотностью от 0,45 до 0,60 г/см3, с ненормируемым остатком на сите с сеткой № 0063, для переработки в пластифицированные изделия, высшего сорта:
ПВХ-Е-7050-М, сорт высший ГОСТ 14039-78.

Пример условного обозначения эмульсионного поливинилхлорида, изготовленного по способу эмульсионной полимеризации, для переработки через пасты, с величиной К от 66 до 69, с ненормируемой насыпной плотностью, с остатком на сите с сеткой № 0063 – 5%, для переработки через средневязкие пасты, первого сорта:
ПВХ-ЕП-6602-С, сорт 1 ГОСТ 14039-78.

Условное обозначение отечественного суспензионного поливинилхлорида, выпускаемого в соответствии с ГОСТ 14332-78 и представляющего собой продукт суспензионной полимеризации винилхлорида, состоит из наименования продукта - ПВХ и следующих обозначений:

  • способа полимеризации – С (суспензионная);
  • нижнего предела диапазона величины константы Фикентчера К, которая характеризует его молекулярную массу К - первые две цифры;
  • показателя насыпной плотности в г/см3 – третья цифра: 0 – без данных; 1 – (0,30-0,40); 2 – (0,35-0,45); 3 – (0,40-0,50); 4 – (0,40-0,65); 5 – (0,45-0,55); 6 – (0,50-0,60); 7 – (0,55-0,65); 8 – (0,60-0,70); 9 – более 0,65;
  • показателя остатка после просева на сите с сеткой № 0063 в % – четвертая цифра: 0 – без данных; 1 – менее или равно 1; 2 – (1-10); 3 – (5-20); 4 – (10-50); 5 – (30-70); 6 – (50-90); 7 – (70-100); 8 – (80-100); 9 – (90-100);
  • применяемости суспензионного поливинилхлорида: Ж – переработка без пластификаторов для (жестких изделий); М – переработка с пластификаторами (для пластифицированных изделий); У – переработка с пластификаторами или без них (для жестких, полужестких или пластифицированных изделий).

После обозначения марки суспензионного поливинилхлорида указывают сорт ГОСТ.

Пример условного обозначения суспензионного поливинилхлорида, изготовленного суспензионной полимеризацией, с величиной К от 70 до 73, с насыпной плотностью от 0,45 до 0,55 г/см3, с остатком после просева на сите с сеткой № 0063 – 90%, для изготовления пластифицированных изделий:
ПВХ-С-7059-М ГОСТ 14332-78.

Условное обозначение отечественного поливинилхлоридного пластиката, полученного переработкой поливинилхлоридной композиции в соответствии с ГОСТ 5960-72, предназначенного для изоляции и защитных оболочек проводов и кабелей, работающих в зависимости от марки пластиката и конструкции провода и кабеля в диапазоне температур от минус 60 до плюс 70 °С, а для пластиката марки ИТ-105 – до плюс 105 °С, имеет следующий вид.

  • Первые две буквы в условном обозначении поливинилхлоридного пластиката типов И и ИО обозначают тип пластиката: И – изоляционный, ИО – изоляционный и для оболочек.
  • Две первые цифры указывают морозостойкость пластиката.
  • Две последующие цифры указывают порядок величины удельного объемного электрического сопротивления при 20°С.
  • Для пластиката типа О (для оболочек) – первая буква обозначает тип пластиката, две последующие цифры указывают морозостойкость пластиката.
  • Обозначение пластиката марки ИТ-105 (изоляционный термостойкий) состоит из букв, обозначающих тип пластиката, и последующих цифр, указывающих верхний предел рабочих температур пластиката.
  • Условное обозначение пластиката, предназначенного для маслобензостойких оболочек – ОМБ-60.
  • Условное обозначение пластиката, предназначенного для оболочек с низкой миграцией пластификатора в полиэтилен – ОНМ-50.
  • Условное обозначение пластиката, предназначенного для оболочек с низким запахом – ОНЗ-40.
  • Кроме того, в условном обозначении пластиката указывают его цвет, рецептуру и сорт.

Пример условного обозначения пластиката для маслобензостойких оболочек черного цвета, рецептуры М 317:
пластикат ОМБ-60, черный, рецептура М 317 ГОСТ 5960-72;

Пример условного обозначения пластиката изоляционного термостойкого марки ИТ-105 с верхним пределом рабочей температуры 105 °С, неокрашенного, рецептуры Т-50, высшего сорта:
пластикат ИТ-105, неокрашенный, рецептура Т-50, высшего сорта ГОСТ 5960-72.

Готовые компаунды на основе ПВХ для различных применений поставляются в гранулированной форме.

В производстве ДПК используется, как правило, жесткие непластифицированные формы ПВХ.

За рубежом существует много критиков поливинилхлоридов по причинам, связанным с экологией и безопасностью (использование хлора в производстве, возможности выделения хлора при переработке, эксплуатации и утилизации).

Доп. литература: Поливинилхлорид, Ульянов В.М. и др., изд. Химия, 1992 г.,