» »

Органическое топливо (уголь, нефть, газ). Нефть, газ и каменный уголь

29.09.2019

Введение

Нефть, природный и попутные газы, каменный уголь.

Основными источниками углеводородов являются природный и попутные нефтяные газы, нефть и каменный уголь.

Нефть

крекинг нефть газ уголь

Нефть - жидкое горючее ископаемое темно-бурого цвета с плотностью 0,70 - 1,04 г/см?. Нефть представляет собой сложную смесь веществ - преимущественно жидких углеводородов. По составу нефти бывают парафиновыми, нафтеновыми и ароматическими. Однако наиболее часто встречается нефть смешанного типа. Кроме углеводородов, в состав нефти входят примеси органических кислородных и сернистых соединений, а также вода и растворенные в ней кальциевые и магниевые соли. Содержатся в нефти и механические примеси - песок и глина. Нефть - ценное сырье для получения высококачественных видов моторного топлива. После очистки от воды и других нежелательных примесей нефть подвергают переработке. Основной способ переработки нефти - перегонка. Она основана на разнице температур кипения углеводородов, входящих в состав нефти. Поскольку нефть содержит сотни различных веществ, многие из которых имеют близкие температуры кипения, выделение индивидуальных углеводородов практически невозможно. Поэтому перегонкой нефть разделяют на фракции, кипящие в довольно широком интервале температур. Перегонкой при обычном давлении нефть разделяют на четыре фракции: бензиновую (30-180 °С), керосиновую (120-315 °С), дизельную (180-350 °С) и мазут (остаток после перегонки). При более тщательной перегонке каждую из этих фракций можно разделить еще на несколько более узких фракций. Так, из бензиновой фракции (смесь углеводородов С5 - С12) можно выделить петролейный эфир (40-70 °С), собственно бензин (70-120 °С) и лигроин (120-180 °С). В состав петролейного эфира входят пентан и гексан. Он является прекрасным растворителем жиров и смол. Бензин содержит неразветвленные предельные углеводороды от пентанов до деканов, циклоалканы (циклопентан и циклогексан) и бензол. Бензин после соответствующей переработки применяется в качестве горючего для авиационных и автомобильных

ДВС. Лигроин, содержащий в своем составе углеводороды С8 - С14 и керосин (смесь углеводородов С12 - С18) используют как горючее для бытовых нагревательных и осветительных приборов. Керосин в больших количествах (после тщательной очистки) применяют в качестве горючего для реактивных самолетов и ракет.

Дизельная фракция нефтеперегонки - горючее для дизельных двигателей. Мазут представляет собой смесь высококипящих углеводородов. Из мазута путем перегонки под уменьшенным давлением получают смазочные масла. Остаток от перегонки мазута называется гудроном. Из него получают битум. Эти продукты используются в дорожном строительстве. Мазут применяют и как котельное топливо.

Основным способом переработки нефти являются различные виды крекинга, т.е. термокаталитического превращения составных частей нефти. Различают следующие основные виды крекинга.

Термический крекинг - расщепление углеводородов происходит под воздействием высоких температур (500-700 оС). Например, из молекулы предельного углеводорода декана С10Н22образуются молекулы пентана и пентена:

С10Н22 >С5Н12 + С5Н10

пентан пентен

Каталитический крекинг проводят также при высоких температурах, но в присутствии катализатора, что позволяет управлять процессом и вести его в нужном направлении. При крекинге нефти образуются непредельные углеводороды, которые находят широкое применение в промышленном органическом синтезе

Природный и попутный нефтяной газы

Природный газ. В состав природного газа входит в основном метан (около 93%). Кроме метана природный газ содержит еще и другие углеводороды, а также азот, СО2, и часто - сероводород. Природный газ при сгорании выделяет много тепла. В этом отношении он значительно превосходит другие виды топлива. Поэтому 90% всего количества природного газа расходуется в качестве топлива на местных электростанциях, промышленных предприятиях и в быту. Остальные 10% используют как ценное сырье для химической промышленности. С этой целью из природного газа выделяют метан, этан и другие алканы. Продукты, которые можно получить из метана имеют важное промышленное значение.

Попутные нефтяные газы. Они растворены под давлением в нефти. При ее извлечении на поверхность давление падает, и растворимость уменьшается, в результате чего газы выделяются из нефти. Попутные газы содержат метан и его гомологи, а также негорючие газы - азот, аргон и СО2. Попутные газы перерабатывают на газоперерабатывающих заводах. Из них получают метан, этан, пропан, бутан и газовый бензин, содержащий углеводороды с числом атомов углерода 5 и больше. Этан и пропан подвергают дегидрированию и получают непредельные углеводороды - этилен и пропилен. Смесь пропана и бутана (сжиженный газ) применяют как бытовое топливо. Газовый бензин добавляют к обычному бензину для ускорения его воспламенения при запуске ДВС.

Каменный уголь

Каменный уголь. Переработка каменного угля идет по трем основным направлениям: коксование, гидрирование и неполное сгорание. Коксование происходит в коксовых печах при температуре 1000-1200 °С. При этой температуре без доступа кислорода каменный уголь подвергается сложнейшим химическим превращениям, в результате которых образуется кокс и летучие продукты. Остывший кокс отправляют на металлургические заводы. При охлаждении летучих продуктов (коксовый газ) конденсируются каменноугольная смола и аммиачная вода. Несконденсированными остаются аммиак, бензол, водород, метан, СО2, азот, этилен и др. Пропуская эти продукты через раствор серной кислоты выделяют сульфат аммония, который используется в качестве минерального удобрения. Бензол поглощают растворителем и отгоняют из раствора. После этого коксовый газ используется как топливо или как химическое сырье. Каменноугольная смола получается в незначительных количествах (3%). Но, учитывая масштабы производства, каменноугольная смола рассматривается как сырье для получения ряда органических веществ. Если от смолы отогнать продукты, кипящие до 350 °С, то остается твердая масса - пек. Его применяют для изготовления лаков. Гидрирование угля осуществляется при температуре 400-600 °С под давлением водорода до 25 МПа в присутствии катализатора. При этом образуется смесь жидких углеводородов, которая может быть использована как моторное топливо. Достоинством этого метода является возможность гидрирования низкосортного бурого угля. Неполное сгорание угля дает оксид углерода (II). На катализаторе (никель, кобальт) при обычном или повышенном давлении из водорода и СО можно получить бензин, содержащий предельные и непредельные углеводороды:

nCO + (2n+1)H2 > CnH2n+2 + nH2O;

nCO + 2nH2 > CnH2n + nH2O.

Если сухую перегонку угля проводить при 500-550 °С, то получают деготь, который наряду с битумом используется в строительном деле как связующий материал при изготовлении кровельных, гидроизоляционных покрытий (рубероид, толь и др.).

На сегодняшний день существует серьезная опасность экологической катастрофы. На земле практически нет места, где природа не потерпела бы от деятельности промышленных предприятий и жизнедеятельности человека. При работе с продуктами перегонки нефти нужно следить, чтобы они не попадали в почву и водоемы. Почва, пропитанная нефтепродуктами, теряет плодородие на многие десятки лет, и его очень трудно восстановить. Только за 1988 г. при повреждении нефтепроводов в одно из крупнейших озер попало около 110000 т нефти. Известны трагические случаи слива мазута и нефти в реки, в которых происходит нерест ценных пород рыб. Серьезную опасность загрязнения воздуха представляют ТЭС, работающие на угле, -- они являются основным источником загрязнения. Отрицательно воздействуют на водоемы ГЭС, работающие в равнинах рек. Хорошо известно, что автомобильный транспорт сильно загрязняет атмосферу продуктами неполного сгорания бензина. Перед учеными стоит задача к минимуму сократить степень загрязнения окружающей среды.

Японцы взялись за газовое топливо будущего? January 13th, 2013

Япония сегодня начала пробную добычу гидрата метана - разновидности природного газа, запасы которого, по оценке ряда экспертов, могут во многом решить энергетические проблемы страны. Специальное исследовательское судно "Тикю" /"Земля"/ приступило к бурению в Тихом океане в 70 км к югу от полуострова Ацуми вблизи города Нагоя на восточном побережье главного японского острова Хонсю.
В течение минувшего года японские специалисты провели ряд экспериментов по бурению тихоокеанского дна в поисках метаногидратов. В этот раз они намерены опробовать полномасштабную добычу энергоресурса и выделение из него газа метана. В случае успеха промышленную разработку месторождения у города Нагоя начнут в 2018 году.

Метаногидрат или гидрат метана - это соединение газа метана с водой, напоминающее по внешнему виду снег или рыхлый подтаявший лед. Этот ресурс широко распространен в природе - например, в зоне вечной мерзлоты. Под дном океана имеются большие запасы метаногидратов, осваивать которые до сих пор считалось невыгодным. Однако японские специалисты уверяют, что нашли относительно рентабельные технологии.


Запасы метаногидратов только в районе к югу от города Нагоя оцениваются в 1 трлн кубометров. Теоретически они могут полностью обеспечить потребности Японии в природном газе в течение 10 лет. Всего же, по прогнозам специалистов, залежей метаногидратов под океанским дном в прилегающих районах стране хватит примерно на 100 лет. Тем не менее стоимость этого топлива с учетом переработки, транспортировки и прочих расходов пока превышает рыночную цену на обычный природный газ.

В настоящее время Япония лишена энергетических ресурсов и полностью их импортирует. Токио, в частности, является крупнейшим в мире покупателем сжиженного природного газа. В последнее же время после аварии на АЭС "Фукусима-1" и постепенного отключения всех атомных станций потребности Японии в энергоресурсах возросли

Несмотря на развитие альтернативных источников энергии, ископаемые виды топлива по-прежнему сохраняют и, в обозримом будущем, будут сохранять главную роль в топливном балансе планеты. По прогнозам экспертов ExxonMobil, потребление энергоресурсов в ближайшие 30 лет на планете возрастет наполовину. Так как продуктивность известных месторождений углеводородов снижается, новые крупные месторождения открываются все реже, а использование угля наносит ущерб экологии. Однако скудеющие запасы обычных углеводородов можно компенсировать.
Те же эксперты ExxonMobil не склонны драматизировать ситуацию. Во-первых, технологии добычи нефти и газа развиваются. Сегодня в Мексиканском заливе, например, нефть добывают с глубины 2,5-3 км под поверхностью воды, такие глубины были немыслимы 15 лет назад. Во-вторых, развиваются технологии переработки сложных видов углеводородов (тяжелых и высокосернистых нефтей) и нефтяных суррогатов (битумы, нефтяные пески). Это позволяет возвращаться к традиционным районам добычи и возобновлять на них работу, а также начинать добычу в новых районах. Например, в Татарстане, при поддержке компании Shell, начинается добыча, так называемой "тяжелой нефти". В Кузбассе разрабатываются проекты по добыче метана из угольных пластов.


Третье направление поддержания уровня добычи углеводородов связано с поиском путей использования нетрадиционных их видов. Среди перспективных новых видов углеводородного сырья ученые выделяют гидрат метана, запасы которого на планете, по ориентировочным оценкам, составляют не менее 250 триллионов кубических метров (по энергетической ценности это в 2 раза больше ценности всех имеющихся на планете запасов нефти, угля и газа вместе взятых).

Гидрат метана - это супрамолекулярное соединение метана с водой. Ниже приведена модель гидрата метана на молекулярном уровне. Вокруг молекулы метана образуется решетка молекул воды (льда). Соединение устойчиво при низкой температуре и повышенном давлении. Например, гидрат метана стабилен при температуре 0 °C и давлении порядка 25 бар и выше. Такое давление имеет место на глубине океана около 250 м. При атмосферном давлении гидрат метана сохраняет устойчивость при температуре −80 °C.


Модель гидрата метана

Если гидрат метана нагревается, либо понижается давление, соединение распадается на воду и природный газ (метан). Из одного кубического метра гидрата метана при нормальном атмосферном давлении можно получить 164 кубических метра природного газа.

По оценкам Департамента Энергетики США, запасы гидрата метана на планете огромны. Однако, до сих пор это соединение практически не используется как энергетический ресурс. Департамент разработал и реализует целую программу (программа R&D) по поиску, оценке и коммерциализации добычи гидрата метана.


Холм из гидрата метана на морском дне

Неслучайно, что именно США готовы выделять значительные средства на разработку технологий добычи гидрата метана. Природный газ занимает в топливном балансе страны почти 23%. Большую часть природного газа США получают по газопроводам из Канады. В 2007 году потребление природного газа в стране составило 623 млрд. куб. м. К 2030 году оно может вырасти на 18-20%. Используя месторождения обычного природного газа в США, Канаде и на шельфе не возможно обеспечить такой уровень добычи.

Но тут как говорят есть другая проблема: вместе с газом поднимется огромная масса воды, от которой газ нужно будет очищать со всем возможным усердием. Нет таких двигателей, коротым было бы безразлично даже и 1% от массы топлива в виде хлоридов и прочих солей океана. Дизели умрут первыми, турбины выдержат немногим дольше. Разве что двигатель ВНЕШНЕГО сгорания Стирлинга?

Так что подавать в трубопровод газ прямо из придонного слоя - не прокатит никаким образом. Головников при очистке японцы хлебанут выше крыши. А потом за них возьмутся зелёные за загрязнения в толще океана его придонными слоями. Скорее всего струя песка и прочих примесей будет тянуться по течению и будет видна из космоса. Примерно как в Мраморном море струя из Босфора.

Очень мне этот проект и его перспективы напоминает неоднозначный и во многом спорный проект по сланцевому газу.


источники

Основными природными источниками углеводородов являются нефть, природный и попутный нефтяной газы и каменный уголь.

Природный и попутный нефтяной газы.

Природный газ – смесь газов, основным компонентом которой является метан, остальное приходится на долю этана, пропана, Бутана, и небольшого количества примесей – азота, оксида углерода (IV), сероводорода и паров воды. 90% его расходуется в качестве топлива, остальные 10% используют как сырье для химической промышленности: получение водорода, этилена, ацетилена, сажи, различный пластмасс, медикаментов и др.

Попутный нефтяной газ – это тоже природный газ, но он встречается вместе с нефтью – находится над нефтью или растворен в ней под давлением. Попутный газ содержит 30 – 50% метана, остальная часть приходится на его гомологи: этан, пропан, бутан и другие углеводороды. Кроме того, в нем присутствуют те же примеси, что и в природном газе.

Три фракции попутного газа:

  1. Газовый бензин; его добавляют к бензину для улучшения запуска двигателя;

  2. Пропан-бутановая смесь; применяется как бытовое топливо;

  3. Сухой газ; используют для получения ацителена, водорода, этилена и других веществ, из которых в свою очередь производят каучуки, пластмассы, спирты, органические кислоты и т.д.

Нефть.

Нефть – маслянистая жидкость от желтого или светло-бурого до черного цвета с характерным запахом. Она легче воды и в ней практически нерастворима. Нефть представляет собой смесь примерно 150 углеводородов с примесями других веществ, поэтому у нее нет определенной температуры кипения.

90% добываемой нефти используется как сырье для производства различных видов топлива и смазочных материалов. В то же время нефть – ценное сырье для химической промышленности.

Нефть, добываемую из земных недр, называю сырой. В сыром виде нефть не применяют, ее подвергают переработке. Сырую нефть очищают от газов, воды и механических примесей, а затем подвергают фракционной перегонке.

Перегонка – процесс разделения смесей на отдельные компоненты, или фракции, на основании различия их температур кипения.

При перегонке нефти выделяют несколько фракций нефтепродуктов:

  1. Газовая фракция (tкип = 40°С) содержит нормальные и разветвленные алканы СН4 – С4Н10;

  2. Бензиновая фракция (tкип = 40 - 200°С) содержит углеводороды С 5 Н 12 – С 11 Н 24 ; при повторной перегонке из смеси выделяют легкие нефтепродукты, кипящие в более низких интервалах температур: петролейный эфир, авиационный и автомобильный бензин;

  3. Лигроиновая фракция (тяжелый бензин, tкип = 150 - 250°С), содеожит углеводороды состава С 8 Н 18 – С 14 Н 30 , применяют в качестве горючего для тракторов, тепловозов, грузовых автомобилей;

  4. Керосиновая фракция (tкип = 180 - 300°С) включает углеводороды состава С 12 Н 26 - С 18 Н 38 ; ее используют в качестве горючего для реактивных самолетов, ракет;

  5. Газойль (tкип = 270 - 350°С) используют как дизельное топливо и в больших масштабах подвергается крекингу.


После отгонки фракций остается темная вязкая жидкость – мазут. Из мазута выделяют соляровые масла, вазелин, парафин. Остаток от перегонки мазута – гудрон, его применяют при производстве материалов для дорожного строительства.

Вторичная переработка нефти основана на химических процессах:

  1. Крекинг – расщепление крупных молекул углеводородов на более мелкие. Различают термический и каталитический крекинг, который более распространен в настоящее время.

  2. Риформинг (ароматизация) - это превращение алканов и циклоалканов в ароматические соединения. Этот процесс осуществляют путем нагревания бензина при повышенном давлении в присутствии катализатора. Риформинг применяют для получения из бензиновых фракций ароматических углеводородов.

  3. Пиролиз нефтепродуктов проводят нагреванием нефтепродуктов до температуры 650 - 800°С, основными продуктами реакции являются непредельные газообразные и ароматические углеводороды.

Нефть – сырье для производства не только топлива, но и многих органических веществ.

Каменный уголь.

Каменный уголь так же является источником энергии и ценным химическим сырьем. В состав каменного угля в основном органические вещества, а также вода, минеральные вещества, при сжигании образующие золу.

Одним из видов переработки каменного угля является коксование – это процесс нагревания угля до температуры 1000°С без доступа воздуха. Коксование угля проводят в коксовых печах. Кокс состоит из практически чистого углерода. Его используют в качестве восстановителя при доменом производстве чугуна на металлургических заводах.

Летучие вещества при конденсации каменноугльную смолу (содержит много различных органических веществ, из них большая часть – ароматические), аммиачную воду (содержит аммиак, соли аммония) и коксовый газ (содержит аммиак, бензол, водород, метан, оксид углерода (II), этилен, азот и другие вещества).

/ Энергия будущего: что делать, когда закончатся нефть, газ и уголь

05.10.2011. Энергия будущего: что делать, когда закончатся нефть, газ и уголь

Великий русский поэт Александр Пушкин, пытаясь передать прелесть белых ночей в Санкт-Петербурге, когда-то писал: «Пишу, читаю без лампады, и ясны спящие громады». К счастью, современному человеку лампада для чтения не нужна - на смену ей давно пришло электричество, представить жизнь без которого почти невозможно.

Однако эксперты предупреждают, что так будет не всегда. По примерным оценкам, через 100-150 лет нефть, газ и уголь, используемые как топливо для большинства электростанций, закончатся, и электричество станет роскошью. Что же в таком случае делать человечеству? Выходом может стать альтернативная энергетика. Правда, в России она пока совершенно не развита.

Россия замыкает

Вариантов нестандартного получения энергии за счет возобновляемых источников великое множество. В качестве одной из альтернатив, которая могла бы прийти на смену нефти и газу, раньше называлась атомная энергия. Однако после аварии на «Фукусиме», приведшей к значительному выбросу смертельной радиации, многие страны задумались об опасности мирного атома.

Другим вариантом замены углеводородов могли бы стать крупные гидроэлектростанции. Но и здесь есть проблема - их потенциал ограничен, и построить их можно далеко не везде. Получается, что ГЭС могут обеспечивать электричеством только небольшое количество людей.

В результате интерес мирового сообщества сосредоточился на нетрадиционных источниках энергии. В число перспективных направлений вошли солнечная энергетика, ветряная, биотопливная, а также мини-гидроэлектростанции, в том числе на основе геотермальной энергии и работающие на силе прилива.

Главными преимуществами альтернативных технологий перед нефтью и газом является высокая экологическая безопасность. Как отмечает представитель «РусГидро» (в России компания занимается возобновляемыми источниками) Иван Слива, при их работе практически нет отходов, выброса загрязняющих веществ в атмосферу или водоемы.

Отсутствуют и экологические издержки, связанные с добычей, переработкой, транспортировкой и утилизацией топлива. Кроме того, альтернативные технологии позволяют обеспечить энергией регионы, куда транспортировка традиционных источников затруднена.

В хозяйстве все сгодится

Потенциал возобновляемых источников энергии в России колоссален. Как отмечает директор по направлению «экология и энергоэффективность» Агентства по прогнозированию балансов в электроэнергетике (АПБЭ) Ольга Новоселова, этот потенциал достигает 4,5 млрд тонн условного топлива в год, что более чем в четыре раза превышает ежегодное внутреннее потребление первичных энергоресурсов в стране. При этом практически в каждом российском регионе есть свой вид возобновляемого ресурса.

Одним из наиболее перспективных направлений является ветроэнергетика. Технический потенциал отрасли в России оценивается в 50 млрд кВт/ч в год, а экономический - около 30% от всего производства электроэнергии в стране. При этом суммарная мощность всех ветровых электростанций РФ до сих пор не превышает 18 МВт.

Еще одним интересным для нашей страны направлением эксперты называют биоэнергетику. Ежегодно в России образуется порядка 100 млн тонн пригодных для получения энергии отходов биомассы - навоз, свалки, опилки, стружки и много другое. Энергетическая ценность такого мусора составляет до 300 млн МВт/ч, при этом уровень реальной утилизации не превышает 10%, отмечают в АПБЭ. Из биотоплива можно производить и биогаз, который является альтернативой природному газу в селе. По оценкам экспертов, биогазовый потенциал России эквивалентен 60-80 млрд кубометров в год (около 10% современной газодобычи в России). И в ближайшее время ожидается бум, в стадии утверждения десятки проектов общей мощностью до 50 МВт.

В области солнечной энергетики в целом суммарный объем введенных мощностей по разным оценкам, составляет не более 5 МВт. При этом уровень инсоляции России сопоставим с показателями той же Германии, где объем солнечной генерации на сегодняшний день достиг уже 20 ГВт. По оценкам координатора Ассоциации солнечной энергетики России Антона Усачева, большим потенциалом обладают южные территории России, а также регионы Дальнего Востока.

Значительные возможности скрыты и в энергетических технологиях, связанных с водой. В частности, на Кавказе есть возможности для строительства мини-ГЭС, а на Камчатке - геотермальных электростанций. Также в России существуют проекты приливных энергообъектов.

Огорчает лишь тот факт, что, несмотря на значительные ресурсы, уже реализованные российские проекты в области альтернативной энергетики пока можно пересчитать по пальцам. Например, в области производства биотоплива особо выделяется Вологодская область, где построен ряд мини-ТЭЦ, работающих на древесных отходах, отмечает специалист «Института проблем естественных монополий (ИПЭМ)» Сергей Белов.

В области геотермальной энергетики еще в 1966г. на Камчатке была построена экспериментальная Паужетская геотермальная электростанция мощностью 11 МВт, а в 2003г. была пущена в эксплуатацию Мутновская ГеоЭС, мощность которой в настоящее время составляет 60 МВт. В сфере ветряной генерации стоит отметить Куликовскую ВЭС, крупнейшую ветряную электростанцию в России, которая была введена в эксплуатацию в 2002г. с мощностью 5,1 МВт.

Конечно, в России есть еще много интересных проектов, в том числе и находящихся в стадии строительства. Однако даже если собрать их все воедино - вряд ли они смогут как-то изменить ситуацию в этой сфере и обеспечить электроэнергией значительную часть населения. Правда, у каждого из нас также есть возможность внести свою лепту в альтернативную энергетику, установив у себя дома или на даче свой источник электричества.

Народный подход

Среди населения спрос на альтернативную энергетику растет параллельно с ростом цен на электричество. Интереса к ней добавляет и низкое качество современного электроснабжения, зачастую приводящее к порче бытовой техники и многодневным отключениям. При этом российские и иностранные «кулибины» готовы предложить населению целый спектр решений в области независимого электроснабжения.

Несмотря на то, что Россия не самая солнечная страна в мире, наибольшей популярностью пользуются маленькие солнечные электростанции. Некоторые фирмы уже за 40 тыс. руб. готовы поставить комплекс оборудования, которые в летние месяцы может обеспечить светом дачный дом, подзарядить батарейки телефонов и ноутбуков и даже выдержать на какое-то время чайник и холодильник. Если купить комплекс за 200 тыс. руб. - то холодильник сможет работать несколько дольше, в сеть можно включать утюг и другие приборы. Есть возможность приобрести и мобильные солнечные модули, позволяющие заряжать телефоны и фонари в походе.

Минусом такой техники является тот факт, что зимой электричества с ее помощью в центральной России получить практически невозможно.

Еще одним вариантом получения энергии может стать установка комбинированной системы, включающей возможности получения ветровой и солнечной энергии, а в их отсутствии - с помощью традиционных источников. Подобная система способна надежно обеспечить электричеством в случае перебоев в электроснабжении.

Также можно установить и собственную ветровую станцию. В частности, одна из компаний готова поставить ветровую электростанцию. Предполагается, что при удачной эксплуатации стоимость вырабатываемой ею электроэнергии может составить 50-60 копеек за киловатт.

Большой потенциал есть и у строительства Микро-ГЭС. Правда, для таких станций есть требования к водным объектам, на которых они должны быть установлены. Как рассказал РБК генеральный директор компании, занимающейся альтернативными технологиями, - «Спецэнергоснаб» - Валерий Брянцев, для ГЭС мощностью 10 кВт может понадобиться водоем с перепадом высот от 2 метров или течением со скоростью 3,5-4 м в секунду. Если таких условий нет, возможно, придется сооружать небольшую плотину. Стоимость создания подобных ГЭС в среднем может быть около 2 тыс. долл. за один кВт мощности. При мощности в 10 кВт можно обеспечить более 40 коттеджей. Правда, не факт, что станция будет работать на полную.

Также перспективным направлением является производство биотоплива, в частности, биогаза на основе отходов со свалок, навоза и опилок. Здесь стоимость установок может варьироваться от нескольких десятков до сотен тысяч евро.

Почему нет?

Во всем мире в последнее время альтернативная энергетика бурно развивается - рост составляет 20-30% в год. Использование возобновляемых источников увеличивается не только в странах Европы и США. Например, Китай в 2010г. по сравнению с 2009г. увеличил потребление возобновляемой энергии на 74,5%, Турция - на 88,1%, Египет - на 35%, приводит данные генеральный директор исследовательского агентства INFOLine Иван Федяков.

Россия на общем фоне выглядит более чем скромно. В стране на альтернативные источники (кроме крупных ГЭС) приходится не более 1% от общего объема генерации и этот показатель не растет. На него не может повлиять даже применение «ручного» управления. К примеру, еще три года назад премьер-министр Владимир Путин призывал к 2020г. увеличить долю альтернативной энергетики до 4,5%, но за прошедший период она так и не изменилась ни на один процентный пункт. Между тем, во многих других странах эра альтернативных источников энергии уже началась. И примеров тому достаточно. Например, в Дании есть возможность использовать энергию ветра - и в некоторые ветряные ночи страна полностью обеспечивает свои потребности в электроэнергии за счет этой технологии. А Анталия (Турция) полностью отапливается за счет ресурсов солнца, которое там светит 300 дней в году.

Так что же мешает развитию альтернативной энергетики в России? Причин этому несколько, уверены эксперты. Прежде всего, мешает наличие нефти и газа и отсутствие хороших советников и объективной информации по возобновляемым источникам у высшего руководства страны, считает генеральный директор компании «Аэнерджи» Станислав Черница. Также влияют консерватизм, нежелание менять привычки, недостаток собственных ресурсов, как технических, так и человеческих.

Пеняют эксперты и на отсутствие государственной поддержки в этой области. Как поясняет Ольга Новоселова, не лучшим образом влияют недостаточно развитая нормативно-правовая база и отсутствие конкретных финансовых механизмов государственной поддержки. Между тем за рубежом для подобных технологий предусмотрены налоговые льготы и прямая государственная поддержка.

Конечно, у альтернативной энергетики есть и свои минусы. В частности, существует мнение, что солнечные модули при массовом использовании способны затемнить значительную часть суши, а производство биотоплива - истощить земли. Также аналитики отмечают непостоянство возобновляемых источников во времени, проблему с запасанием энергии, минимизации потерь при ее передаче на расстояния.

Другой аргумент - высокие капитальные затраты на подобные технологии. Например, строительство ветряков и солнечных панелей существенно дороже обычных электростанций, а инвестиции в нетрадиционную энергетику окупаются вполне традиционным способом - за счет конечного потребителя. В результате, полагает эксперт «Института проблем естественных монополий» Сергей Белов, альтернативная энергетика остается забавой для богатых, но обделенных природными ресурсами, регионов. Для России же, богатой на полезные ископаемые, более актуальными могли бы быть вопрос газификации и строительства инфраструктуры.

Однако неизвестно, помогут ли данные меры в решении энергетической проблемы - ведь энергетика, построенная на основе нефти, газа и угля, рано или поздно может столкнуться с исчерпаемостью этих ресурсов. А это, судя по всему, перспектива не самая дальняя. По прогнозам министра природных ресурсов Юрия Трутнева, углеводороды в мире могут закончиться уже через 100-150 лет. И какое место на изменившейся энергетической карте мира достанется в этом случае России - пока непонятно.

Переработка нефти

Нефть представляет собой многокомпонентную смесь различных веществ преимущественно углеводородов. Данные компоненты отличаются друг от друга по температурам кипения. В связи с этим, если нагревать нефть, то сначала из нее будут улетучиваться наиболее легкокипящие компоненты, затем соединения с более высокой температурой кипения и т.д. На данном явлении основана первичная переработка нефти , заключающаяся в перегонке (ректификации) нефти. Данный процесс называют первичным, поскольку предполагается, что при его протекании не происходят химические превращения веществ, а нефть лишь разделяется на фракции с различными температурами кипения. Ниже представлена принципиальная схема ректификационной колонны с кратким описанием самого процесса перегонки:

Перед процессом ректификации нефть специальным образом подготавливают, а именно, избавляют от примесной воды с растворенными в ней солями и от твердых механических примесей. Подготовленная таким образом нефть поступает в трубчатую печь, где нагревается до высокой температуры (320-350 о С). После нагревания в трубчатой печи нефть, обладающая высокой температурой, поступает в нижнюю часть ректификационной колонны, где происходит испарение отдельных фракций и подъем их паров вверх по ректификационной колонне. Чем выше находится участок ректификационной колонны, тем его температура ниже. Таким образом, на разной высоте отбирают следующие фракции:

1) ректификационные газы (отбирают в самой верхней части колонны, в связи с чем их температура кипения не превышает 40 о С);

2) бензиновая фракция (температуры кипения от 35 до 200 о С);

3) лигроиновая фракция (температуры кипения от 150 до 250 о С);

4) керосиновая фракция (температуры кипения от 190 до 300 о С);

5) дизельную фракцию (температуры кипения от 200 до 300 о С);

6) мазут (температуры кипения более 350 о С).

Следует отметить, что средние фракции, выделяемые при ректификации нефти, не удовлетворяют стандартам, предъявляемым к качествам топлив. Кроме того, в результате перегонки нефти образуется немалое количество мазута — далеко не самого востребованного продукта. В связи с этим после первичной переработки нефти стоит задача повышения выхода более дорогих, в частности, бензиновых фракций, а также повышения качества этих фракций. Эти задачи решаются с применением различных процессов вторичной переработки нефти , например, таких как крекинг и риформинг .

Следует отметить, что количество процессов, используемых при вторичной переработке нефти, значительно больше, и мы затрагиваем лишь одни из основных. Давайте теперь разберемся, в чем же заключается смысл этих процессов.

Крекинг (термический или каталитический)

Данный процесс предназначен для повышения выхода бензиновой фракции. Для этой цели тяжелые фракции, например, мазут подвергают сильному нагреванию чаще всего в присутствии катализатора. В результате такого воздействия длинноцепочечные молекулы, входящие в состав тяжелых фракций, рвутся и образуются углеводороды с меньшей молекулярной массой. Фактически это приводит к дополнительному выходу более ценной, чем исходный мазут, бензиновой фракции. Химическую суть данного процесса отражает уравнение:

Риформинг

Данный процесс выполняет задачу улучшения качества бензиновой фракции, в частности повышения ее детонационной устойчивости (октанового числа). Именно эта характеристика бензинов указывается на бензозаправках (92-й, 95-й, 98-й бензин и т.д.).

В результате процесса риформинга повышается доля ароматических углеводородов в бензиновой фракции, имеющих среди прочих углеводородов одни из самых высоких октановых чисел. Достигается такое увеличение доли ароматических углеводородов в основном в результате протекания при процессе риформинга реакций дегидроциклизации. Например, при достаточно сильном нагревании н -гексана в присутствии платинового катализатора он превращается в бензол, а н-гептан аналогичным образом — в толуол:

Переработка каменного угля

Основным способом переработки каменного угля является коксование . Коксованием угля называют процесс, при котором уголь нагревают без доступа воздуха. При этом в результате такого нагревания из угля выделяют четыре основных продукта:

1) Кокс

Твердая субстанция, представляющая собой практически чистый углерод.

2) Каменноугольная смола

Содержит большое количество разнообразных преимущественно ароматических соединений, таких как бензол его гомологи, фенолы, ароматические спирты, нафталин, гомологи нафталина и т.д.;

3) Аммиачная вода

Несмотря на свое название данная фракция, помимо аммиака и воды, содержит также фенол, сероводород и некоторые другие соединения.

4) Коксовый газ

Основными компонентами коксового газа являются водород, метан, углекислый газ, азот, этилен и т.д.