» »

Электронно-лучевая трубка. Устройство электронно-лучевой трубки

12.10.2019

Электронно-лучевая трубка (ЭЛТ) является тем термоэлектронным прибором, который похоже, не собираются выводить из употребления в ближайшем будущем. ЭЛТ используется в осциллографе для наблюдения электрических сигналов и, конечно, в качестве кинескопа в телевизионном приемнике и монитора в компьютере и радиолокаторе.

ЭЛТ состоит из трех основных элементов: электронной пушки, являющейся источником электронного луча, отклоняющей луч системы, которая может быть электростатической или магнитной, и люминесцентного экрана, испускающего видимый свет в месте падения электронного луча. Все существенные черты ЭЛТ с электростатическим отклонением отражены на рис. 3.14.

Катод испускает электроны, и они летят в сторону первого анода A v на который подается положительное относительно катода напряжение в несколько тысяч вольт. Поток электронов регулируется сеткой, отрицательное напряжение на которой определяется требуемой яркостью. Электронный луч проносится сквозь отверстие в центре первого анода, а также сквозь второй анод, на котором действует немного большее положительное напряжение, чем на первом аноде.

Рис. 3.14. ЭЛТ с электростатическим отклонением. На упрощенной схеме, подключенной к ЭЛТ, показаны регуляторы яркости и фокуса.

Назначение двух анодов состоит в том, чтобы создать между ними электрическое поле с силовыми линиями, искривленными так, чтобы все электроны луча сходились в одном месте на экране. Разность потенциалов между анодами А 1 и Л 2 подбирается с помощью регулятора фокуса таким образом, чтобы получить на экране четко сфокусированное пятно. Эту конструкцию из двух анодов можно рассматривать как электронную линзу. Подобным образом можно создать магнитную линзу, приложив магнитное поле; в некоторых ЭЛТ фокусировка осуществляется именно так. С большим эффектом этот принцип используется также в электронном микроскопе, где может быть применена комбинация электронных линз, обеспечивающая очень большое увеличение с разрешающей способностью, в тысячу раз лучшей, чем у оптического микроскопа.

После анодов электронный луч в ЭЛТ проходит между отклоняющими пластинами, к которым можно прикладывать напряжения для отклонения луча в вертикальном направлении в случае пластин Y ив горизонтальном направлении в случае пластин X. После отклоняющей системы луч попадает на люминесцентный экран, то есть на поверхность, покрытую люминофором.

На первый взгляд, электронам некуда деваться после того, как они ударяются об экран, и можно подумать, что отрицательный заряд на нем будет расти. В действительности этого не происходит, так как энергии электронов в луче достаточно, чтобы вызвать «брызги» вторичных электронов из экрана. Эти вторичные электроны собираются затем проводящим покрытием на стенках трубки. На самом деле с экрана обычно уходит так много заряда, что на нем самом возникает положительный по отношению ко второму аноду потенциал в несколько вольт.

Электростатическое отклонение является стандартом для большинства осциллографов, но это неудобно в отношении больших ЭЛТ, используемых в телевидении. В этих трубках с их огромными экранами (до 900 мм по диагонали) для обеспечения желаемой яркости требуется разгонять электроны в луче до больших энергий (типичное напряжение высоковольтного

Рис. 3.15. Принцип действия магнитной отклоняющей системы, используемый в телевизионных трубках.

источника 25 кВ). Если бы в таких трубках с их очень большим углом отклонения (110°) применялась бы электростатическая система отклонения, то понадобились бы чрезмерно большие отклоняющие напряжения. Для таких приложений стандартом является магнитное отклонение. На рис. 3.15 показана типичная конструкция магнитной отклоняющей системы, где для создания отклоняющего поля используются пары катушек. Обратите внимание на то, что оси катушек перпендикулярны направлению, в котором осуществляется отклонение, в отличие от осевых линий пластин в электростатической отклоняющей системе, которые параллельны направлению отклонения. Это различие подчеркивает, что в электрическом и магнитном полях электроны ведут себя по-разному.

Электронно-лучевая трубка, изобретенная еще в 1897 г., является электронно-вакуумным прибором, который имеет много общего с обычной электронной лампой. Внешне трубка представляет собой стеклянную колбу с удлиненной горловиной и плоской торцовой частью— экраном.

Внутри колбы и горловины, так же как и внутри баллона электронной лампы, располагаются электроды, выводы которых, так же как и у лампы, подпаяны к ножкам цоколя.

Основное назначение электронно-лучевой трубки — образование видимого изображения с помощью электрических сигналов. Подводя к электродам трубки соответствующие напряжения, можно рисовать на ее экране графики переменных напряжения и токов, характеристики различных радиоустройств, а также получать движущиеся изображения, подобным тем, которые мы видим на экране кино.

Рис. 1. Чудесный карандаш.

Все это делает электронно-лучевую трубку незаменимой частью телевизоров, радиолокаторов, многих измерительных и вычислительных приборов.

Какой же «быстрый карандаш» успевает зарисовывать на экране электроннолучевой трубки импульсы тока, которые длятся миллионные доли секунды? Каким образом удается подбирать тона сложного рисунка? Как можно мгновенно «стирать» с экрана одно изображение и с такой же быстротой создать другое? (рис. 1).

Люминесцирующий экран к электронный луч. В основе работы электронно-лучевой трубки лежит способность некоторых веществ (виллемит, сернистый цинк, алюминат цинка:) светиться (люминесцировать) под действием электронной бомбардировки.

Если таким люминесцирующим веществом покрыть изнутри анод обычной электронной лампы, то он будет ярко светиться за счет бомбардировки электронами, образующими анодный ток. Между прочим, такой люминесцирующий анод используется в одной из специальных электронных ламп — оптическом индикаторе настройки 6Е5С. Люминесцирующим составом покрывают изнутри утолщенный торец колбы, образуя таким образам люминесцирующий экран электронно-лучевой трубки. С помощью специального устройства —«электронной пушки»— из горловины трубки на экран направляютузкий пучок электродов —«электронный луч».

Рис. 2. Экран светится под действием пучка электронов.

В том месте, где электроны ударяются о люминесцирующий слой, на экране образуется светящаяся точка, которая отлично видна (с торца) снаружи трубки сквозь стекло. Чем большее количество электронов образует луч и чем с большей скоростью эти электроны движутся, тем ярче светящаяся точка на люминесцирующем экране.

Если электронный луч перемещать в пространстве, то и светящаяся точка также будет двигаться по экрану, причем если перемещение луча происходит достаточно быстро, то наш глаз вместо движущейся точки увидит на экране сплошные светящиеся линии (рис. 2).

Если электронным лучом быстро прочертить весь экран строка за строкой и при этом соответствующим образом менять ток луча (т. е. яркость светящейся точки), то на экране можно будет получить сложную и достаточно четкую картину.

Таким образом, изображение на люминесцирующем экране трубки получается с помощью остро направленного пучка электронов и поэтому, так же как и в электронной лампе, основные процессы в трубке связаны с получением и упорядоченным движением свободных электронов в вакууме.

Электронно-лучевая трубка и триод

Электроннолучевая трубка во многом напоминает усилительную лампу — триод. Так же как и в лампе, в трубке имеется катод, испускающий электроны, необходимые для образования электронного луча. От катода трубки электроны движутся к экрану, который, так же как и анод триода, имеет высокий положительный потенциал относительно катода.

Рис. 3. Возникновение вторичных электронов

Однако подача положительного напряжения непосредственно «а экран затруднена, так как люминесцирующее вещество является полупроводником. Поэтому положительные напряжения на экране приходится создавать косвенным путем. Колбу изнутри покрывают слоем графита, на который и подают положительное напряжение. Электроны, образующие луч, с силой ударяя в люминесцирующее вещество, «выбивают» из него так называемые «вторичные» электроны, которые упорядоченно движутся к графитовому покрытию под действием положительного напряжения на нем (рис. 3).

В первый момент число вторичных электронов, покидающих экран, намного превышает число попадающих в него электронов луча. Это приводит к тому, что в атомах люминесцирующего вещества образуется нехватка электронов, т. е. экран приобретает положительный потенциал. Равновесие между числом попадающих на экран электронов и числом выбиваемых из него вторичных электронов установится лишь тогда, когда напряжение на экране трубки окажется близким к напряжению на графитовом покрытии. Таким образом, ток в электронно-лучевой трубке замыкается по пути катод — экран — графитовое покрытие, а следовательно, именно графитовое покрытие играет роль анода, хотя электроды, вылетевшие из катода, непосредственно на него не попадают.

Вблизи катода трубки располагается управляющий электрод (модулятор), который играет ту же роль, что и управляющая сетка триода. Меняя напряжение на управляющем электроде, можно изменять величину тока луча, что в свою очередь приведет к изменению яркости светящейся на экране точки.

Однако наряду со сходством между усилительной электронной лампой и электронно-лучевой трубкой в работе последней имеются особенности, принципиально отличающие ее от триода.

Во-первых, электроны движутся от катода к экрану трубки узким пучком, в то время как к аноду лампы они движутся «широким фронтом».

Во-вторых, для того чтобы, передвигая светящуюся точку по экрану, создавать на нем изображение, необходимо изменять направление движения летящих к экрану электронов и, таким образом, перемещать электронный луч в пространстве.

Из всего этого следует, что важнейшими процессами, отличающими трубку от триода, являются образование тонкого электронного луча и отклонение этого луча в разные стороны.

Образование и фокусировка электронного луча

Образование электронного луча начинается уже около катода электронно-лучевой трубки, который состоит из маленького никелевого цилиндра с колпачком, покрытым эмиттирующим (хорошо испускающим электроны при нагревании) материалом. Внутри цилиндра помещается изолированная проволока — подогреватель. Благодаря такой конструкции катода электроны излучаются со значительно меньшей поверхности, чем в обычной электронной лампе. Это сразу создает некоторую направленность пучка летящих от катода электронов.

Катод электронно-лучевой трубки помещен в тепловой экран — металлический цилиндр, торцовая часть которого, направленная в сторону колбы, открыта. Благодаря этому электроны движутся от катода не во все стороны, как это имеет место в лампе, а только в направлении люминесцирующето экрана. Однако, несмотря на специальную конструкцию катода и тепловой экран, поток движущихся электронов остается чрезмерно широким.

Резкое сужение потока электронов осуществляется управляющим электродом, который хотя и выполняет роль управляющей сетки, конструктивно ничего общего с сеткой не имеет. Управляющий электрод выполнен в виде накрывающего катод цилиндра, в торцовой части которого сделано круглое отверстие диаметром в несколько десятых долей миллиметра.

На управляющий электрод подают значительное (несколько десятков вольт) отрицательное смещение, благодаря чему он отталкивает электроны, обладающие, как известно, отрицательным зарядом. Под действием отрицательного напряжения траектории (пути движения) электронов, проходящих сквозь узкое отверстие в управляющем электроде, «сжимаются» к центру этого отверстия и таким образом образуется довольно тонкий электронный луч.

Однако для нормальной работы трубки нужно не только создать электронный луч, но и произвести его фокусировку, т. е. добиться того, чтобы траектории всех электронов луча сходились на экране в одной точке. Если фокусировки луча не производить, то на экране вместо светящейся точки появится довольно большое светящееся пятно и вследствие этого изображение окажется расплывчатым или, как говорят фотолюбители, «нерезким».

Рис. 4. Электронная пушка и ее оптическая аналогия.

Фокусировка луча осуществляется электронной оптической системой, которая действует на движущиеся электроны так же, как и обычная оптика на световые лучи. Электронная оптическая система образуется электростатическими линзами (статическая фокусировка) либо электромагнитными линзами (магнитная фокусировка), конечный результат действия которых одинаков.

Электростатическая линза — это не что иное (рис. 4,а), как образованное с помощью специальных электродов электрическое поле, под действием которого искривляются траектории электронов луча. В трубке со статической фокусировкой (рис. 4,б) обычно имеются две линзы, для образования которых используют уже известный нам управляющий электрод, а также два специальных электрода: первый и второй аноды. Оба эти электрода представляют собой металлические цилиндры, иногда разных диаметров, на которые подают большое положительное (относительно катода) напряжение: на первый анод — обычно 200—500 в, на второй — 800—15 000 в.

Первая линза образуется между управляющим электродом и первым анодом. Ее оптическим аналогом является короткофокусная собирающая линза, состоящая из двух элементов: двояковыпуклой и двояковогнутой линз. Эта линза дает внутри первого анода изображение катода, в свою очередь проектируемого на экран трубки с помощью второй линзы.

Вторая линза образуется полем между первым и вторым анодами и аналогична первой линзе, за исключением того, что ее фокусное расстояние значительно больше. Таким образом, первая линза играет роль конденсора, а вторая линза — главной проекционной линзы.

Внутри анодов располагают тонкие металлические пластины с отверстиями в центре — диафрагмы, которые улучшают фокусирующие свойства линз.

Изменяя напряжение на любом из трех образующих электростатические линзы электродов, можно менять свойства линз, добиваясь хорошей фокусировки луча. Обычно это делают путем изменения напряжения на первом аноде.

Несколько слов о названиях электродов «первый анод» и «второй анод». Раньше мы установили, что роль анода в электронно-лучевой трубке играет графитовое покрытие вблизи экрана. Однако первый « второй аноды, в основном предназначенные для фокусировки луча, благодаря наличию на них большого положительного напряжения ускоряют электроны, т. е. делают то же, что и анод усилительной лампы. Поэтому названия этих электродов можно считать оправданными, тем более что на них попадает некоторая часть вылетающих из катода электронов.

Рис. 5. Трубка с магнитной фокусировкой. 1 —управляющий электрод; 2—первый анод; 3—фокусирующая катушка; 4—графитовое покрытие; 5—-люминесцирующий экран; 6—колба.

В электронно-лучевых трубках с магнитной фокусировкой (рис. 5) второй анод отсутствует. Роль собирающей линзы в этой трубке играет магнитное поле. Это поле образуется охватывающей горловину трубки катушкой, по которой пропускают постоянный ток. Магнитное поле катушки создает вращательное движение электронов. В то же время электроны с большой скоростью движутся параллельно оси трубки к люминесцирующему экрану под действием положительного напряжения на нем. В результате этого траектории электронов представляют собой кривую, «напоминающую винтовую линию.

По мере приближения к экрану скорость поступательного движения электронов возрастает, а действие магнитного поля ослабляется. Поэтому радиус кривой постепенно уменьшается и вблизи экрана пучок электронов вытягивается в тонкий прямой луч. Хорошей фокусировки, как правило, добиваются путем изменения тока в фокусирующей катушке, т. е. путем изменения напряженности магнитного поля.

Всю систему для образования электронного луча в трубках часто называют «электронной пушкой» или «электронным прожектором».

Отклонение электронного луча

Отклонение электронного луча, так же как и его фокусировка, осуществляется с помощью электрических полей (электростатическое отклонение) либо с помощью магнитных полей (магнитное отклонение).

В трубках с электростатическим (рис. 6,а) отклонением электронный луч, прежде чем попасть на экран, проходит между четырьмя плоскими металлическими пластинами-электродами, которые получили название отклоняющих пластин.

Рис. 6. Управление лучом при помощи. а—электростатического и б—магнитного полей.

Пожалуй, нет такого человека, который бы в своей жизни не сталкивался с приборами, в конструкцию которых входит электронно-лучевая трубка (или ЭЛТ). Сейчас подобные решения активно вытесняются своими более современными аналогами на основе жидкокристаллических экранов (ЖК). Однако существует ряд областей, в которых электронно-лучевая трубка по-прежнему является незаменимой. Например, в высокоточных осциллографах ЖК использовать нельзя. Тем не менее, очевидно одно - прогресс устройств отображения информации в конечном итоге приведет к полному отказу от ЭЛТ. Это вопрос времени.

История появления

Первооткрывателем можно считать Ю. Плюккера, который в 1859 году, изучая поведение металлов при различных внешних воздействиях, обнаружил явление излучения (эмиссии) элементарных частиц - электронов. Формируемые пучки частиц получили название катодных лучей. Также он обратил внимание на возникновение видимого свечения некоторых веществ (люминофор) при попадании на них электронных лучей. Современная электронно-лучевая трубка способна создавать изображение именно благодаря этим двум открытиям.

Через 20 лет опытным путем было установлено, что направлением движения излучаемых электронов можно управлять воздействием внешнего магнитного поля. Это легко объяснить, если вспомнить, что перемещающиеся носители отрицательного заряда характеризуются магнитным и электрическим полями.

В 1895 году К. Ф. Браун доработал систему управления в трубке и тем самым сумел менять вектор направленности потока частиц не только полем, но и особым зеркалом, способным вращаться, что открыло совершенно новые перспективы использования изобретения. В 1903 году Венельт разместил внутри трубки катод-электрод в виде цилиндра, что дало возможность управлять интенсивностью излучаемого потока.

В 1905 году Эйнштейн сформулировал уравнения расчета фотоэффекта и через 6 лет было продемонстрировано работающее устройство передачи изображений на расстояния. Управление лучом осуществлялось а за величину яркости отвечал конденсатор.

Во время начала производства первых моделей ЭЛТ промышленность была не готова создавать экраны с большим размером диагонали, поэтому в качестве компромисса применялись увеличительные линзы.

Устройство электронно-лучевой трубки

С тех пор устройство было доработано, однако изменения носят эволюционный характер, так как ничего принципиально нового в ход работы добавлено не было.

Стеклянный корпус начинается трубкой с конусообразным расширением, образующим экран. В устройствах цветного изображения внутренняя поверхность с определенным шагом покрыта тремя видами люминофора дающими свой цвет свечения при попадании пучка электронов. Соответственно, есть три катода (пушки). Для того чтобы отсеять расфокусировавшиеся электроны и обеспечить точное попадание нужного луча в нужную точку экрана, между катодной системой и слоем люминофора размещают стальную решетку - маску. Ее можно сравнить с трафаретом, отсекающим все лишнее.

С поверхности подогреваемых катодов начинается эмиссия электронов. Они устремляются в сторону анода (электрод, с положительным зарядом), подключенного к конусной части трубки. Далее пучки фокусируются специальной катушкой и попадают в поле отклоняющей системы. Проходя через решетку, падают на нужные точки экрана, вызывая преобразование своей в свечение.

Вычислительная техника

Мониторы с электронно-лучевой трубкой нашли широкое применение в составе компьютерных систем. Простота конструкции, высокая надежность, точная цветопередача и отсутствие задержек (тех самых миллисекунд реакции матрицы в ЖК) - вот их основные преимущества. Однако в последнее время, как уже указывалось, ЭЛТ вытесняется более экономными и эргономичными ЖК-мониторами.

Задачи работы

  1. общее знакомство с устройством и принципом действия электронных осциллографов,
  2. определение чувствительности осциллографа,
  3. проведение некоторых измерений в цепи переменного тока при помощи осциллографа.

Общие сведения об устройстве и работе электронного осциллографа

С помощью катода электронно-лучевой трубки осциллографа создается электронный поток, который формируется в трубке в узкий пучок, направленный к экрану. Сфокусированный на экране трубки электронный пучок вызывает в месте падения светящееся пятно, яркость которого зависит от энергии пучка (экран покрыт специальным люминесцирующим составом, светящимся под воздействием пучка электронов). Электронный луч является практически безынерционным, поэтому световое пятно можно практически мгновенно перемещать в любом направлении по экрану, если воздействовать на электронный пучок электрическим полем. Поле создается с помощью двух пар плоскопараллельных пластин, называемых отклоняющими пластинами. Малая инерционность луча обуславливает возможность наблюдения быстропеременных процессов с частотой 10 9 Гц и более.

Рассматривая существующие осциллографы, разнообразные по конструкции и назначению, можно увидеть, что функциональная схема их примерно одинакова. Основными и обязательными узлами должны быть:

Электронно-лучевая трубка для визуального наблюдения исследуемого процесса;

Источники питания для получения необходимых напряжений, подаваемых на электроды трубки;

Устройство для регулировки яркости, фокусировки и смещения луча;

Генератор развертки для перемещения электронного луча (и соответственно, светящегося пятна) по экрану трубки с определенной скоростью;

Усилители (и аттенюаторы), используемые для усиления или ослабления напряжения исследуемого сигнала, если оно недостаточно для заметного отклонения луча на экране трубки или, напротив, слишком велико.

Устройство электронно-лучевой трубки

Прежде всего, рассмотрим устройство электронно-лучевой трубки (рис. 36.1). Обычно это стеклянная колба 3, откачанная до высокого вакуума. В узкой ее части расположен нагреваемый катод 4, из которого вылетают электроны за счет термоэлектронной эмиссии Система цилиндрических электродов 5, 6, 7 фокусирует электроны в узкий пучок 12 и управляет его интенсивностью. Далее следуют две пары отклоняющих пластин 8 и 9 (горизонтальные и вертикальные) и, наконец, экран 10 – дно колбы 3, покрытое люминесцирующим составом, благодаря которому становится видимым след электронного луча.

В состав катода входит вольфрамовая нить – нагреватель 2, расположенная в узкой трубке, торец которой (для уменьшения работы выхода электронов) покрыт слоем окиси бария или стронция и собственно является источником потока электронов.

Процесс формирования электронов в узкий луч с помощью электростатических полей во многом напоминает действие оптических линз на световой луч. Поэтому система электродов 5,6,7 носит название электронно-оптического устройства.

Электрод 5 (модулятор) в виде закрытого цилиндра с узким отверстием находится под небольшим отрицательным потенциалом относительно катода и выполняет функции, аналогичные управляющей сетке электронной лампы. Изменяя величину отрицательного напряжения на модулирующем или управляющем электроде, можно изменять количество электронов, проходящих через его отверстие. Следовательно, с помощью модулирующего электрода можно управлять яркостью луча на экране. Потенциометр, управляющий величиной отрицательного напряжения на модуляторе, выведен на переднюю панель осциллографа с надписью ”яркость”.

Система из двух коаксиальных цилиндров 6 и 7, называемых первым и вторым анодами, служит для ускорения и фокусировки пучка. Электростатическое поле в промежутке между первым и вторым анодами направлено таким образом, что отклоняет расходящиеся траектории электронов снова к оси цилиндра, подобно тому, как оптическая система из двух линз действует на расходящийся пучок света. При этом катод 4 и модулятор 5 составляют первую электронную линзу, а первому и второму анодам соответствует другая электронная линза.

В итоге пучок электронов фокусируется в точке, которая должна лежать в плоскости экрана, что оказывается возможным при соответствующем выборе разности потенциалов между первым и вторым анодами. Ручка потенциометра, регулирующего это напряжение, выведена на переднюю панель осциллограф с надписью ”фокус”.

При попадании электронного луча на экран на нем образуется резко очерченное светящееся пятно (соответствующее сечению пучка), яркость которого зависит от количества и скорости электронов в пучке. Большая часть энергии пучка при бомбардировке экрана превращается в тепловую. Во избежание прожога люминесцирующего покрытия не допустима большая яркость при неподвижном электронном луче. Отклонение луча осуществляется с помощью двух пар плоскопараллельных пластин 8 и 9, расположенных под прямым углом друг к другу.

При наличии разности потенциалов на пластинах одной пары однородное электрическое поле между ними отклоняет траекторию пучка электронов в зависимости от величины и знака этого поля. Расчеты показывают, что величина отклонения луча на экране трубки D (в миллиметрах) связана с напряжением на пластинах U D и напряжением на втором аноде Ua 2 (в вольтах) следующим образом:

(36.1),

Как работает электронно-лучевая трубка?

Электронно-лучевые трубки - это электровакуумные приборы, в которых образуется электронный пучок малого поперечного сечения, причем электронный пучок может отклоняться в желаемом направлении и, попадая на люминесцентный экран, вызывать его свечение (рис. 5.24). Электронно-лучевая трубка является электронно-оптическим преобразователем, превращающим электрический сигнал в соответствующее ему изображение в виде импульсного колебания, воспроизводимого на экране трубки. Электронный пучок образуется в электронном прожекторе (или электронной пушке), состоящем из катода и фокусирующих электродов. Первый фокусирующий электрод, который называют также модулятором , выполняет функции сетки с отрицательным смещением, направляющей электроны к оси трубки. Изменение напряжения смещения сетки влияет на число электронов, а следовательно, на яркость получаемого на экране изображения. За модулятором (в направлении к экрану) расположены следующие электроды, задачей которых является фокусирование и ускорение электронов. Они действуют на принципе электронных линз. Фокусирующе-ускоряющие электроды называются анодами и на них подается положительное напряжение. В зависимости от типа трубки анодные напряжения имеют значения от нескольких сотен вольт до нескольких десятков киловольт.

Рис. 5.24. Схематическое изображение электронно-лучевой трубки:

1 - катод; 2 - анод I: 3 - анод II; 4 - горизонтальные отклоняющие пластины; 5 - электронный пучок; 6 - экран; 7 - вертикальные отклоняющие пластины; 8 - модулятор


В некоторых трубках фокусировку пучка производят с помощью магнитного поля путем использования катушек, расположенных снаружи лампы, вместо электродов, находящихся внутри трубки и создающих фокусирующее электрическое поле. Отклонение пучка также осуществляется двумя методами: с помощью электрического или магнитного поля. В первом случае в трубке помещают отклоняющие пластины, во втором - снаружи трубки монтируют отклоняющие катушки. Для отклонения как в горизонтальном, так и в вертикальном направлениях используют пластины (или катушки) вертикального или горизонтального отклонения луча.

Экран трубки покрыт изнутри материалом - люминофором, который светится под влиянием бомбардировки электронами. Люминофоры отличаются различным цветом свечения и разным временем свечения после прекращения возбуждения, которое называется временем послесвечения . Обычно оно составляет от долей секунды до нескольких часов в зависимости от назначения трубки.