» »

Схема лампы клл. Ремонт светодиодных LED ламп на примерах. Схемы электронных балластов для люминесцентных ламп

15.08.2023

В предыдущих частях, ссылки на которые приведены выше, были рассмотрены как общие технические характеристики, так и особенности конкретных компактных люминесцентных ламп. Но испытуемые сходят с тестирования случайным образом, да и свойства КЛЛ разных производителей несколько отличаются, что невольно поднимает интерес к внутреннему устройству ламп и детальному изучению технологии их работы. Данный материал рассчитан на подготовленного читателя, поэтому прошу извинить за возможные трудности с восприятием материала.

Электронная схема

Преобразователи для питания КЛЛ могут быть построены по различной схемотехнике, от вибропреобразователей до... Впрочем, не стоит забивать себе голову мудреными словами, практически все КЛЛ целевого диапазона выполнены по одной и той же концепции тысяча девятьсот махрового года – на резонансном полумостовом автогенераторе. Разработано много контроллеров для люминесцентных ламп, с различными функциями и крайне аккуратным отношением к лампе, но все это не прижилось.

Причина? Не думаю, что денежная, микросхемы при крупносерийном выпуске быстро теряют в цене. Тогда что сдерживает развитие прогресса? Скорее всего, консерватизм мышления («схема работает, и никто не жалуется»), и отсутствие заинтересованности в повышении качества и времени работы устройства. Думаю, у вас уже сложилось собственное мнение по данному вопросу, а потому я скромно умолкаю и перехожу к «нашим баранам».

Чаще всего преобразователь выполняется по следующей топологии:

Здесь представлена неполная схема - отсутствует входной фильтр, подавляющий высокочастотные помехи, диоды для защиты транзисторов от обратного напряжения и прочие мелочи. В нормальных КЛЛ эти компоненты присутствуют, но речь идет о лампах бюджетного сегмента, а потому – что есть, то есть. Кроме того, чрезмерное количество элементов усложняет анализ схемы. Полные варианты построения преобразователей легко .

Схему можно разделить на следующие части:

  • Входной выпрямительный узел (коричневый блок) – выпрямляет и сглаживает переменное напряжение сети 220 вольт, формирует постоянное напряжение около 280 вольт для питания преобразователя.
  • Схема запуска (синий блок) – запускает автогенератор при включении устройства.
  • Силовая часть (зеленый блок) – преобразует выпрямленное напряжение сети в переменное напряжение высокой частоты.
  • Управляющий трансформатор TV1.
  • Узел колбы (фиолетовый блок, совместно с дросселем L1) – согласует выход силовой части с колбой люминесцентной лампы.

Теперь несколько подробнее. Схема действительно весьма интересная, хоть и выглядит простой.

Напряжение сети выпрямляется диодным мостом и сглаживается электролитическим конденсатором («С1» на представленной электрической схеме), напряжение с него обеспечивает работу силовой части. Оно подается на два ключа (Q1 и Q2) на биполярных транзисторах npn проводимости, которые преобразуют его в переменное напряжение и передают на узел согласования с колбой.

Вся конструкция электронного балласта - это автогенератор. Устройство работает на некоторой частоте, которая зависит от отдельных характеристик ряда компонентов. Я не собираюсь лукавить, действительно так и есть – работа автогенераторных схем зависит от массы характеристик и крайне неустойчива. В нормальной схеме выделенный контроллер управляет силовыми ключами, и получаемые характеристики работы (частота, скважность) напрямую определяются из условий правильной работы люминесцентной лампы. Здесь же налицо «тупой» автогенератор, который просто работает и все. Впрочем, я несколько забежал вперед.

Забудем пока о лампе и цепи запуска, это отдельный разговор. Силовая часть состоит из двух ключей на транзисторах Q1 и Q2, управляемых трансформатором TV1, форма напряжения которого формируется от тока, проходящего через колбу, последний в свою очередь зависит от частоты и величины напряжения с выхода ключевых транзисторов Q1/Q2.

Он ее любил.
Она съела кусок мяса,
Он ее убил.
В яму закопал,
И надпись написал,
Что:
У попа была собака,
и так далее.

Именно так и работает автогенератор, «сам от себя», и разорвать этот порочный круг нельзя. Налаживать такие устройства – проще сразу застрелиться, они или сразу работают или… хорошо, если не взрываются. Единственный способ разобраться в вопросе – это разделить устройство на части и анализировать их независимо. При отладке так и поступают, цепь положительной обратной связи отключают, а на управляющий трансформатор подают сигнал с отдельного генератора. Если полениться и пойти простым путем с «просто включить», то кончится все хлопком и поиском очередной пары транзисторов. Для уменьшения риска рекомендуют включать лампу через ЛН (лампу накаливания), которая выполнит функции предохранителя при «эксцессе» в электронике. Прием очень хороший, только от горелых транзисторов не спасает.

Итак, силовые транзисторы Q1 и Q2 открываются попеременно, что обеспечивается полярностью обмоток управляющего трансформатора. Если положить, что на началах обмоток (отмечено точкой) в какой-то момент действует импульс положительной полярности, то на вход транзистора Q1 будет поступать положительное напряжение, а на Q2 - отрицательное. Это означает, что транзистор Q1 будет открыт, Q2 закрыт, и на выходе сформируется уровень напряжения, близкий к напряжению питания (несколько меньше, на величину напряжения насыщения коллектор-эмиттер Q1). Если управляющее напряжение сменит знак, то аналогично сменится и состояние транзисторов – Q1 закроется, а Q2 откроется, таким образом на выходе установится низкий уровень, почти 0 вольт.

Значит, на выходе получается переменное напряжение с уровнями «ноль» - «все питание» и периодом, зависящим от управляющего сигнала, который формируется трансформатором TV1. В качестве задающей входной величины для него выступает ток нагрузки. Если предельно упростить силовую часть, то она будет выглядеть следующим образом:

Через правую обмотку трансформатора к выходу ключевого каскада на транзисторах Q1/Q2 подключена нагрузка, состоящая из дросселя L1 и лампы (с парой конденсаторов и терморезистором PTC). Это означает, что ток через лампу является той величиной, что задает форму сигнала, который в свою очередь включает транзисторы. Так и хочется добавить: «А открывающиеся транзисторы формируют напряжение, которое вызывает ток, которое, которое…», круг замкнулся.

В данном «круге» обязательно должен быть элемент, определяющий рабочую частоту всего устройства, иначе устойчивое функционирование окажется невозможным. Для автогенераторного балласта КЛЛ таким ключевым элементом является резонансный контур из дросселя L1, конденсатора C4 и эквивалентного сопротивления лампы - классический вариант RLC контура.

Резонансная частота для данного построения зависит не только от величин реактивных компонентов (L1 и C4), но и от приведенного активного сопротивления лампы. Формула выглядит следующим образом:

Подробнее о резонансном контуре с последовательной и параллельной нагрузкой можно почитать в WikipediA . Хочется отметить важный момент – при уменьшении номинала сопротивления нагрузки происходит снижение резонансной частоты системы.

Подобное построение схемы будет обеспечивать работоспособность лампы, но ни о какой стабилизации не может быть и речи – устройство всегда будет стараться работать на резонансной частоте с максимальной отдачей. Это чересчур плохо, автоматическую регулировку вводить надо, но как? Ставить датчик тока, формировать опорное напряжение и обрабатывать усилителем ошибки? Еще немного и до полного ШИМ-преобразователя можно дойти. Это будет здорово, только глупо – давно уже разработаны микросхемы преобразователей люминесцентных ламп, дублировать их на транзисторах – задача идиотская. Как выйти из ситуации?

Усложнение схемы приведет к ее нецелесообразности, и это при том, что такое построение «почти устраивает». И решение было найдено (причем очень давно), его успешно применяют в устройствах со схожим принципом действия. Идея состоит в том, что управляющий трансформатор изготавливают не с обычным сердечником из магнитомягкого материала (феррита), а используют материал с прямоугольной петлей гистерезиса перемагничивания.

Дабы не наводить тень на плетень сразу перейдем к следствию замены обычного ферромагнитного материала на «особенный». Критерием переключения служит энергия (которая вызывает напряженность магнитного поля в магнитопроводе). Как только энергия превышает порог, за этим сразу следует переключение. Для данной схемы мерой накопления является количество витков первичной обмотки трансформатора и ток через нее. Данные характеристики являются ограничивающим фактором, регулирующим частоту импульсов для поддержания неизменного тока лампы.

Косвенно, на применение специального материала магнитопровода указывает соотношение числа витков – для нормальной работы «токового трансформатора» ток управления транзисторами должен быть примерно в десять раз меньше выходного тока, нельзя же загонять транзисторы в глубокое насыщение. В данном случае первичная обмотка состоит из восьми витков, а «вторичные» из трех, что означает коэффициент трансформации 2.7 и явно меньше озвученной ранее цифры. Подстройка характеристик преобразователя осуществляется не только количеством витков, но и номиналами резисторов в базах и эмиттерах транзисторов.

По счастью, нам не придется рассчитывать или оптимизировать блок преобразователя, поэтому весь этот «дремучий лес» я с радостью пропускаю. Отметим главное – схема как-то работает, и влезать в нее точно не стоит, это конструкция «сама в себе» и простой модернизации не приемлет.

Ладно, с преобразователем немного разобрались, но этот автогенератор может работать только в том случае, если он «уже» генерирует. Если импульсов нет, то нет тока через управляющий трансформатор и, как следствие, нет сигналов на открывание транзисторов, система «спит». Чтобы ее разбудить, применяется схема запуска, которая генерирует одиночный импульс для открывания нижнего транзистора (Q2), что вызывает запуск автогенератора.

Вернемся к первоначальной схеме. Блок запуска выделен синим прямоугольником, он состоит из резисторов R1 и R2, диодов D1 и D2, конденсатора С2. На этих элементах собран релаксационный генератор, работает он следующим образом: конденсатор С2 заряжается небольшим током через резистор R1 до напряжения пробоя динистора D2, обычно это около 30 вольт. При открывании D2 конденсатор С2 разряжается через базу транзистора Q2, что создает импульс запуска преобразователя КЛЛ. Через очень небольшое время напряжение на конденсаторе уменьшается до величины, при котором динистор выключается и далее цикл повторяется – напряжение на конденсаторе снова будет медленно расти до включения динистора.

Запускающий импульс есть, зачем же нужен диод D1? Дело в том, что релаксационный генератор будет генерировать свои импульсы постоянно. Они хоть и редки, но могут совпасть с моментом открытого состояния верхнего транзистора, что приведет к дополнительному открыванию и нижнего транзистора. В результате возникнет импульс тока большой величины через оба открытых ключа, подобный казус может закончиться только одним – сгоранием схемы. Таким образом, после выхода преобразователя в режим коммутации схему запуска надо блокировать от повторных попыток генерации, что и выполняется с помощью диода D1 – он разряжает конденсатор С2 в те моменты, когда транзистор Q2 открыт.

Остался резистор R2, и смысл его использования заключается в том, что он задает ненулевое напряжение на коллекторе транзистора Q2 (а точнее, на конденсаторе С3). Ну, сами посудите, какой смысл подавать запускающий импульс в базу нижнего транзистора, если на коллекторе нулевое напряжение и его включение никоим образом не скажется на состоянии других элементов. Резистор R2 гарантирует, что перед запуском напряжение на коллекторе «будет», в этом его смысл.

К слову, обычно подобных «фиксирующих» резисторов ставят не один, а два: первый – как изображено на схеме, второй – от коллектора Q2 на цепь «-» источника питания. Для полумостовой схемы вреден очень большой начальный импульс и применение пары резисторов позволяет снизить амплитуду в два раза. Впрочем, это мелочи.

Следующий элемент, на котором хочется остановить ваше внимание – узел сопряжения с лампой. Он состоит из конденсаторов С3 и С4, резистора R7 и самой лампы. Забудем на время о PTC, конденсаторе С3 и рассмотрим упрощенную схему блока лампы.

Под «V1» здесь понимается напряжение прямоугольной формы (меандр), которое создает узел преобразователя.

Для начала определимся с простым вопросом – что такое лампа? Это герметичная емкость с небольшим количеством ртути и заполненная инертным газом. По двум краям лампы установлены два катода прямого нагрева. К слову, его подогрев не обязательная функция, существуют разновидности люминесцентных ламп с «холодным» катодом (CCFL). После возникновения разряда между катодами возникает ток, который течет по спирали нити независимо от того, подано ли напряжение на выводы накала. Это значит, что даже при закороченных выводах накала его нить будет горячей. Впрочем, вопросы работы катода пока можно опустить, важны лишь два момента, касающиеся установившегося режима работы:

  • Накал всегда горячий, даже если его выводы закорочены.
  • Ток лампы течет через нить накала.

С самим накалом пока закончим и обратим взор на баллон лампы. Обычно он выполнен в виде тонкой трубки, завитой причудливым образом («U» или «спираль»). В ее недрах образуется разряд, который и вызывает столь ценное нам свечение. Для получения разряда между катодами требуется приложить высокое напряжение, что вызовет пробой с последующим переходом в тлеющий разряд. Этот режим характеризуется меньшим напряжением и большим током. Логично предположить, что у лампы два устойчивых состояния – пробой (высокое напряжение, малый ток) и нормальный режим (меньшее напряжение, относительно большой ток).

Пока оставим это здравое предположение под знаком вопроса и продолжим мысль дальше – а что произойдет, если преобразователь станет увеличивать напряжение на лампе? Больше напряжения – больше ток через нее, какие еще варианты? Проведем простую проверку – посмотрим ток через лампу. Я не привожу картинку, ввиду ее явной очевидности – форма тока полностью повторяет форму напряжения, подаваемого на лампу. Что ж, пока все сходится. Но «увы», внимательное чтение документации приносит некоторый диссонанс. В частности, в app. note # (THE L6569: A NEW HIGH VOLTAGE IC DRIVER FOR ELECTRONIC LAMP BALLAST) содержится рисунок 15, который приведен ниже, дабы вы не тратили время на изучение всего документа.

Из этого графика следует, что по мере увеличения тока через лампу напряжение на ней уменьшается. Гм. Диссонанс усиливается. В установившемся режиме на высокой частоте преобразователя форма тока через лампу характеризуется чисто активным видом, без реактивных составляющих, а по долговременному изменению режимов средняя величина тока весьма нелинейна. Уменьшение напряжения при увеличении тока говорит об отрицательном внутреннем сопротивлении лампы, что явно подразумевает ее склонность к самовозбуждению. Впрочем, плазма в лампе уже находится в некотором режиме объемного колебательного процесса – наверняка вы замечали различные плавающие спрайты в ее теле. Весьма досадно, что график на рисунке ограничен столь малым диапазоном, 0.1-0.23 ампера.

Попробую предположить, что при снижении тока тенденция сохранится, но вот вопрос – будет ли она монотонной? Строить собственный преобразователь с регулируемыми характеристиками очень долгая история, можно обойтись обычной КЛЛ с автогенераторным преобразователем, но с одним дополнением - добавить регулятор величины напряжения питания. Электронная схема достаточно адекватно работает от 70 вольт переменного напряжения, что позволяет изменять мощность лампы в несколько раз.

Менять величину переменного напряжения хлопотно, тиристорные регуляторы вообще неприменимы, поэтому я воспользовался устройством плавной подачи напряжения, что длительное время используется у меня в комнате. Первоначально блок плавного управления напряжением замышлялся для снижения стресса включения КЛЛ при отсутствии в них предварительного прогрева и уменьшения неприятных эффектов резкого включения света в ночное время суток. Была снята фаза включения лампы (16 секунд, 452 Кбайт) , можете посмотреть. Напряжение повышается довольно быстро, поэтому мне пришлось несколько разрядить кадры.

Уж не знаю, как это покажется вам, а я же наблюдаю несколько «рывков». Если посмотреть яркость в нескольких точках кадра и усреднить, то она будет меняться примерно следующим образом:

В начальный момент времени возникает разряд и начало свечения паров ртути, поэтому интервал до 200 мс не интересен, да и нет там ничего необычного. Но после 230 мс происходит резкое возрастание интенсивности с небольшой стабилизацией, после чего следует второй резкий скачок яркости. Напряжение питания повышается монотонно и довольно линейно, при разработке блока это было проверено, а потому резкое изменение свойств кажется странным. На данном графике наблюдаются два явных «рывка».

Можно было бы свалить все на прогрев ртути и образование паров, вот только включение этой же лампы при номинальном напряжении питания не показывает никаких необычных явлений. Погодите, где-то уже встречалось нечто подобное... В первой части статьи рассматривался случай включения холодной люминесцентной лампы и на графике наблюдалась одна странность, которую я не смог тогда объяснить.

Обратите внимание на середину графика зеленого цвета. Ничего похожего не наблюдаете?

Объяснение этому феномену простое, и я с ним уже сталкивался – у плазмы несколько устойчивых состояний. В древние советские времена у нас разрабатывался малогабаритный карманный телевизор, мне поручили вопрос подсветки. Полных данных о характеристиках той лампы не сохранилось, но примерные цифры я помню – напряжение пробоя 800 вольт, лампа находится в этом режиме до 0.8 мА. При увеличении тока выше этого порога напряжение резко снижается примерно до 200 вольт, это состояние сохраняется до тока 25 мА. При дальнейшем повышении тока напряжение падает до 45 В и в дальнейшем почти не изменяется.

Таким образом, преобразователь подсветки можно было строить на 45 вольт, но с обязательным обеспечением проскакивания состояния «200 В». Или же остаться в режиме горения «200 В», но с риском свалиться в низковольтовый режим. Телевизор питался от батареек НКГЦ-045, а потому избыточной мощности взяться неоткуда, пришлось ограничиться не особо устойчивым, но маломощным вариантом. К слову, пробовали и полноценный вариант, с обратноходовым преобразователем и накоплением энергии в конденсаторах, но конструкция получалась неудобной, да и советские конденсаторы не выдерживали работы при номинальном, но импульсном напряжении. Поставили обычный резонансный автогенератор, сейчас такое решение часто применяют в КЛЛ с питанием от 12 вольт. Впрочем, я отвлекся, извините.

Мораль сей басни такова – у плазмы в колбе есть «устойчивые» состояния, которые она может «занимать». Попробую предположить, что не только «занимать», но и переключаться между ними, коль скоро у нее отрицательное внутреннее сопротивление.

Подведем итог этого раздела – эквивалентное сопротивление лампы в режиме горения можно представить в виде резистора, только номинал этого «резистора» может принимать различные значения, в зависимости от величины тока через него.

Вернемся к схеме электронного балласта. Положим, схема работает, но за счет чего обеспечивается поддержание яркости свечения? Ранее высказывалось предположение, что стабилизирующую функцию выполняет особая конструкция управляющего трансформатора, который меняет длительность открытого состояния транзисторов, то есть рабочую частоту. Вот только преобразователь формирует прямоугольное напряжение (если говорить точнее - трапецеидальное), а на лампу приходит напряжение синусоидальной формы.

Дело в том, что между лампой и преобразователем стоит резонансный контур, образуемый последовательным дросселем и параллельным конденсатором. Эти элементы «поглощают» энергию преобразователя и формируют синусоидальное напряжение в нагрузке (то есть лампе), отдавая энергию в нее. Поэтому форма «возбуждающего» напряжения не важна, на выходе всегда будет «синус». Впрочем, небольшие искажения формы все равно присутствуют, добротность контура не слишком высока.

Возьмем некоторые «усредненные» параметры реактивных элементов для тестируемых ламп мощностью 15-25 Вт и сделаем симуляцию. При этом эквивалентное сопротивление лампы составит величину порядка 1 КОм, что позволит использовать ряд резисторов нагрузки и 1-2-4-8 КОм как характеристику работы системы в разных режимах горения.

Верхний рисунок показывает напряжение на лампе, нижний – ток через резонансный конденсатор.

Симулятор показывает результаты, сопоставимые с теоретическими выкладками – по мере снижения номинала резистора нагрузки также снижается резонансная частота, уменьшается напряжение, да и «резонансный» подъем становится меньше по величине (снижается добротность контура). Если очень утрировать, то случай с небольшой нагрузкой (8 КОм, красный график) можно приравнять к начальной фазе включения лампы, ей характерно высокое напряжение. Однако обратите внимание на ток через резонансный конденсатор (нижний рисунок). Если нагрузка нормальная (1-2 КОм, салатовый-синий графики), то ток через него относительно небольшой. Я не стал отмечать ток через сопротивление нагрузки, дабы не захламлять диаграмму. Для этих двух случаев ток через конденсатор меньше, чем через нагрузочное сопротивление. Если же номинал сопротивления повышать, то через конденсатор начинает протекать большой ток. А если учесть, что при этом на том же конденсаторе сильно возрастает напряжение, то реактивная мощность окажется просто огромной.

По симуляции выходит 0.92 ампера и 1.1 кВ, или 1 кВ*А. Термин «Вт» в данном случае не применим, мощность реактивная, а потому отмечается как «В*А». Понятно, что реальный преобразователь в КЛЛ не способен выработать такую мощность, даже на короткое время, но стрессовые условия функционирования обеспечены. Такой случай (небольшая нагрузка) возникает в момент включения лампы, поэтому неудивительно, что электроника так «любит» взрываться именно в момент включения. В решениях с использованием микросхем этот стрессовое состояние смягчают управлением частоты, не позволяя выставить рабочую частоту строго на порог резонанса (режим «разогрева»), что увеличивает срок службы всего устройства.

И здесь отметим крайне важный момент – если на лампе высокое напряжение (в момент возникновения разряда), то это означает крайне большую реактивную мощность, протекающую через резонансный конденсатор. Понятное дело, что та же мощность циркулирует и в резонансном дросселе, но они не «мрут как мухи» в КЛЛ, что столь «свойственно» резонансным конденсаторам.

Ранее рассматривался хоть и упрощенный, но достаточно функциональный вариант электронного балласта. Однако существует и еще более «дешевый» вариант исполнения той же схемы. Основные узлы остаются прежними, «упрощению» подвергается узел запуска. Если в первом варианте за запуск отвечал специальный элемент (динистор), стоимость которого… я не знаю точно, сколько стоит одна спичка? Но когда следует указание «экономить любой ценой!», то мы, покупатели, пожинаем плоды творчества «этих товарищей». Схема подобного исполнения выглядит примерно так:

На первый взгляд, схема стала несколько проще, убрались компоненты из центральной части.

Вся схема представляет собой усилитель с положительной обратной связью выход-вход, а потому генерировать он просто обязан, проблема заключается лишь в запуске. В ранее рассмотренном варианте схемы за этот момент отвечал узел на динисторе, здесь же он отсутствует. Для запуска используется перевод транзисторов из ключевого в слаботочный линейный режим работы. А именно, получается «как бы» обычный усилитель, который не может не возбудится. Для перевода транзисторов в усилительный режим необходимо обеспечить хотя бы небольшой ток коллектора в состоянии покоя, что осуществляется установкой резистора R1 между коллектором и базой транзистора Q2.

На рисунке представлен «упрощенный» вариант схемы с автозапуском, но существует и более «полный» вариант с переводом обоих транзисторов в усилительный режим. Впрочем, у него есть недостаток – приходится устанавливать большее количество деталей, а потому встречается реже. Коль скоро верхний транзистор (Q1) не проводит ток в состоянии покоя, то в схему требуется добавить резистор для создания такого тока. В данной реализации эту функцию выполняет резистор R2.

Если сравнивать первый и второй вариант исполнения балласта, то можно отметить, что:

  • Силовые компоненты одинаковые, различие проявляется только в момент запуска.
  • Вариант с динистором характеризуется четким порогом напряжения включения преобразователя.
  • Вариант с автозапуском не получил никаких четких границ и, потенциально, может никогда не включиться. Возможны проблемы с запуском при низких или высоких температурах, старении компонентов электронного балласта. Этот способ менее надежен – электролитические конденсаторы обладают явной тенденцией «высыхать» при высокой температуре.

Короче говоря, второй вариант явно хуже. И, что интересно, не обязательно дешевле – динистор заменяется электролитическим конденсатором, и кто из них меньше стоит?

Схемы с автозапуском отмечены в продукции торговой марки «GamBiT», поэтому я рассказал о существовании подобного схемного решения, а так… неприятно. Как разработчик аппаратуры, я крайне негативно отношусь к автогенераторным «штучкам» – они или работают или не работают, «и все». А автогенератор с автозапуском – это уже предел. К слову, подобное схемное решение уже применялось серийно, вспомните компьютерные блоки питания АТ (не путайте с ATX!). В них для запуска оба транзистора в полумосте переводились в слабый активный режим, что облегчало возникновение генерации. Одно «но», после запуска подавалось напряжение на микросхему управления, и она перехватывала контроль за коммутацией транзисторов. Здесь же чистый автогенератор. Что ж, бюджетнейшее решение, дальше некуда. И, конечно же, в ущерб качеству.

Энергосберегающие лампы широко применяются в быту и на производстве, со временем они приходят в негодность, а между тем многие из них после несложного ремонта можно восстановить. Если вышел из строя сам светильник, то из электронной «начинки» можно сделать довольно мощный блок питания на любое нужное напряжение.

Как выглядит блок питания из энергосберегающей лампы

В быту часто требуется компактный, но в то же время мощный низковольтный блок питания, сделать такой можно, используя вышедшую из строя энергосберегающую лампу. В лампах чаще всего выходят из строя светильники, а блок питания остается в рабочем состоянии.

Для того чтобы сделать блок питания, необходимо разобраться в принципе работы электроники, содержащейся в энергосберегающей лампе.

Достоинства импульсных блоков питания

В последние годы наметилась явная тенденция к уходу от классических трансформаторных блоков питания к импульсным. Это связано, в первую очередь, с большими недостатками трансформаторных блоков питания, таких как большая масса, малая перегрузочная способность, малый КПД.

Устранение этих недостатков в импульсных блоках питания, а также развитие элементной базы позволило широко использовать эти узлы питания для устройств с мощностью от единиц ватт до многих киловатт.

Схема блока питания

Принцип работы импульсного блока питания в энергосберегающей лампе точно такой же, как в любом другом устройстве, например, в компьютере или телевизоре.

В общих чертах работу импульсного блока питания можно описать следующим образом:

  • Переменный сетевой ток преобразуется в постоянный без изменения его напряжения, т.е. 220 В.
  • Широтно-импульсный преобразователь на транзисторах превращает постоянное напряжение в прямоугольные импульсы, с частотой от 20 до 40 кГц (в зависимости от модели лампы).
  • Это напряжение через дроссель подается на светильник.

Рассмотрим схему и порядок работы импульсного блока питания лампы (рисунок ниже) более подробно.

Схема электронного балласта энергосберегающей лампы

Сетевое напряжение поступает на мостовой выпрямитель(VD1-VD4) через ограничительный резистор R 0 небольшого сопротивления, далее выпрямленное напряжение сглаживается на фильтрующем высоковольтном конденсаторе (С 0), и через сглаживающий фильтр (L0) подается на транзисторный преобразователь.

Запуск транзисторного преобразователя происходит в тот момент, когда напряжение на конденсаторе С1 превысит порог открытия динистора VD2. Это запустит в работу генератор на транзисторах VT1 и VT2, благодаря чему возникает автогенерация на частоте около 20 кГц.

Другие элементы схемы, такие как R2, C8 и C11, играют вспомогательную роль, облегчая запуск генератора. Резисторы R7 и R8 увеличивают скорость закрытия транзисторов.

А резисторы R5 и R6 служат как ограничительные в цепях баз транзисторов, R3 и R4 предохраняют их от насыщения, а в случае пробоя играют роль предохранителей.

Диоды VD7, VD6 – защитные, хотя во многих транзисторах, предназначенных для работы в подобных устройствах, такие диоды встроены.

TV1 – трансформатор, с его обмоток TV1-1 и TV1-2, напряжение обратной связи с выхода генератора подается в базовые цепи транзисторов, создавая тем самым условия для работы генератора.

На рисунке выше красным цветом выделены детали, подлежащие удалению при переделке блока, точки А–А` нужно соединить перемычкой.

Переделка блока

Перед тем как приступить к переделке блока питания, следует определиться с тем, какую мощность тока необходимо иметь на выходе, от этого будет зависеть глубина модернизации. Так, если требуется мощность 20-30 Вт, то переделка будет минимальной и не потребует большого вмешательства в существующую схему. Если необходимо получить мощность 50 и более ватт, то модернизация потребуется более основательная.

Следует иметь в виду, что на выходе блока питания будет постоянное напряжение, а не переменное. Получить от такого блока питания переменное напряжение частотой 50 Гц невозможно.

Определяем мощность

Мощность можно вычислить по формуле:

Р – мощность, Вт;

I – сила тока, А;

U – напряжение, В.

Например, возьмем блок питания со следующими параметрами: напряжение – 12 В, сила тока – 2 А, тогда мощность будет:

С учетом перегрузки можно принять 24-26 Вт, так что для изготовления такого блока потребуется минимальное вмешательство в схему энергосберегающей лампы мощностью 25 Вт.

Новые детали

Добавление новых деталей в схему

Добавляемые детали выделены красным цветом, это:

  • диодный мост VD14-VD17;
  • два конденсатора С 9 , С 10 ;
  • дополнительная обмотка, размещенная на балластном дросселе L5, количество витков подбирается опытным путем.

Добавляемая обмотка на дроссель играет еще одну немаловажную роль разделительного трансформатора, предохраняя от попадания сетевого напряжения на выход блока питания.

Чтобы определить необходимое количество витков в добавляемой обмотке, следует проделать следующие действия:

  1. на дроссель наматывают временную обмотку, примерно 10 витков любого провода;
  2. соединяют с нагрузочным сопротивлением, мощностью не менее 30 Вт и сопротивлением примерно 5-6 Ом;
  3. включают в сеть, замеряют напряжение на нагрузочном сопротивлении;
  4. полученное значение делят на количество витков, узнают, сколько вольт приходится на 1 виток;
  5. вычисляют необходимое число витков для постоянной обмотки.

Более детальный расчет приведен ниже.

Испытательное включение переделанного блока питания

После этого легко вычислить необходимое число витков. Для этого напряжение, которое планируется получить от этого блока, делят на напряжение одного витка, получается количество витков, к полученному результату добавляют про запас примерно 5-10%.

W=U вых /U вит, где

W – количество витков;

U вых – требуемое выходное напряжение блока питания;

U вит – напряжение на один виток.

Намотка дополнительной обмотки на штатный дроссель

Оригинальная обмотка дросселя находится под напряжением сети! При намотке поверх нее дополнительной обмотки необходимо предусмотреть межобмоточную изоляцию, особенно если наматывается провод типа ПЭЛ, в эмалевой изоляции. Для межобмоточной изоляции можно применить ленту из политетрафторэтилена для уплотнения резьбовых соединений, которой пользуются сантехники, ее толщина всего 0,2 мм.

Мощность в таком блоке ограничена габаритной мощностью используемого трансформатора и допустимым током транзисторов.

Блок питания повышенной мощности

Для этого потребуется более сложная модернизация:

  • дополнительный трансформатор на ферритовом кольце;
  • замена транзисторов;
  • установка транзисторов на радиаторы;
  • увеличение емкости некоторых конденсаторов.

В результате такой модернизации получают блок питания мощностью до 100 Вт, при выходном напряжении 12 В. Он способен обеспечить ток 8-9 ампер. Этого достаточно для питания, например, шуруповерта средней мощности.

Схема модернизированного блока питания приведена на рисунке ниже.

Блок питания мощностью 100 Вт

Как видно на схеме, резистор R 0 заменен на более мощный (3-ваттный), его сопротивление уменьшено до 5 Ом. Его можно заменить на два 2-ваттных по 10 Ом, соединив их параллельно. Далее, С 0 – его емкость увеличена до 100 мкф, с рабочим напряжением 350 В. Если нежелательно увеличивать габариты блока питания, то можно подыскать миниатюрный конденсатор такой емкости, в частности, его можно взять из фотоаппарата-мыльницы.

Для обеспечения надежной работы блока полезно несколько уменьшить номиналы резисторов R 5 и R 6 , до 18–15 Ом, а также увеличить мощность резисторов R 7 , R 8 и R 3 , R 4 . Если частота генерации окажется невысокой, то следует увеличить номиналы конденсаторов C­ 3 и C 4 – 68n.

Самым сложным может оказаться изготовление трансформатора. Для этой цели в импульсных блоках чаще всего используют ферритовые кольца соответствующих размеров и магнитной проницаемости.

Расчет таких трансформаторов довольно сложен, но в интернете есть много программ, с помощью которых это очень легко сделать, например, «Программа расчета импульсного трансформатора Lite-CalcIT».

Как выглядит импульсный трансформатор

Расчет, проведенный с помощью этой программы, дал следующие результаты:

Для сердечника используется ферритовое кольцо, его внешний диаметр – 40, внутренний – 22, а толщина – 20 мм. Первичная обмотка проводом ПЭЛ – 0,85 мм 2 имеет 63 витка, а две вторичных тем же проводом – 12.

Вторичную обмотку необходимо наматывать сразу в два провода, при этом их желательно предварительно слегка скрутить между собой по всей длине, так как эти трансформаторы очень чувствительны к несимметричности обмоток. Если не соблюдать это условие, то диоды VD14 и VD15 будут нагреваться неравномерно, а это еще больше увеличит несимметричность что, в конце концов, выведет их из строя.

Зато такие трансформаторы легко прощают значительные ошибки при расчете количества витков, до 30%.

Так как эта схема изначально рассчитывалась для работы с лампой мощностью 20 Вт, то установлены транзисторы 13003. На рисунке ниже позиция (1) – транзисторы средней мощности, их следует заменить на более мощные, например, 13007, как на позиции (2). Возможно, их придется установить на металлическую пластину (радиатор), площадью около 30 см 2 .

Испытание

Пробное включение стоит проводить с соблюдением некоторых мер предосторожности, чтобы не вывести из строя блок питания:

  1. Первое пробное включение производить через лампу накаливания 100 Вт, чтобы ограничить ток на блок питания.
  2. К выходу обязательно подключить нагрузочный резистор 3-4 Ома, мощностью 50-60 Вт.
  3. Если все прошло штатно, дать поработать 5-10 мин., отключить и проверить степень нагрева трансформатора, транзисторов и диодов выпрямителя.

Если в процессе замены деталей не были допущены ошибки, блок питания должен заработать без проблем.

Если пробное включение показало работоспособность блока, остается испытать его в режиме полной нагрузки. Для этого сопротивление нагрузочного резистора уменьшить до 1,2-2 Ом и включить его в сеть напрямую без лампочки на 1-2 минуты. После чего отключить и проверить температуру транзисторов: если она превышает 60 0 С, то их придется установить на радиаторы.

В качестве радиатора можно использовать как заводской радиатор, что будет наиболее верным решением, так и алюминиевую пластину, толщиной не менее 4 мм и площадью 30 кв.см. Под транзисторы необходимо подложить слюдяную прокладку, крепить их к радиатору нужно с помощью винтов с изолирующими втулками и шайбами.

Блок из лампы. Видео

О том, как сделать импульсный блок питания из эконом лампы, видео ниже.

Импульсный блок питания из балласта энергосберегающей лампы можно сделать своими руками, имея минимальные навыки работы с паяльником.

Лампы накаливания хотя и стоят дешево, но потребляют много электроэнергии, поэтому многие страны отказываются от их производства (США, страны Западной Европы). Взамен им приходят компактные люминесцентные лампы дневного света (энергосберегающие), их закручивают в те же патроны Е27, что и лампы накаливания. Однако стоят они в 15-30 раз дороже, зато в 6-8 раз дольше служат и в 4 раза меньше потребляют электроэнергии, что и определяет их судьбу. Рынок переполнен разнообразием таких ламп, в основном китайского производства. Одна из таких ламп, фирмы DELUX, показана на фото.

Ее мощность 26 Вт -220 В, а блок питания, называемый еще электронным балластом, расположен на плате размерами 48x48 мм (рис.1 ) и находится в цоколе этой лампы.

Ее радиоэлементы размещены на монтажной плате навесным монтажом, без применения ЧИП-элементов. Принципиальная схема нарисована автором из осмотра монтажной платы и показана на рис.2.

Примечание к схеме: на схеме отсутствует точка, обозначающая соединение динистора, диода D7 и базы транзистора EN13003A

Вначале уместно напомнить принцип зажигания люминесцентных ламп, в том числе и при применении электронных балластов. Для зажигания люминесцентной лампы необходимо разогреть ее нити накала и приложить напряжение 500...1000 В, т.е. значительно больше, чем напряжение электросети. Величина напряжения зажигания прямо пропорциональна длине стеклянной колбы люминесцентной лампы. Естественно, для коротких компактных ламп она меньше, а для длинных трубчатых ламп - больше. После зажигания лампа резко уменьшает свое сопротивление, а значит, надо применять ограничитель тока для предотвращения КЗ в цепи. Схема электронного балласта для компактной люминесцентной лампы представляет собой двухтактный полумостовой преобразователь напряжения. Вначале сетевое напряжение с помощью 2-полупериодного моста выпрямляется до постоянного напряжения 300...310 В. Запуск преобразователя обеспечивает симметричный динистор, обозначенный на схеме Z, он открывается, когда, при включении электросети, напряжение в точках его подключения превысит порог срабатывания. При открывании, через динистор проходит импульс на базу нижнего по схеме транзистора, и преобразователь запускается. Далее двухтактный полумостовой преобразователь, активными элементами которого являются два транзистора n-p-n, преобразует постоянное напряжение 300...310 В, в высокочастотное напряжение, что позволяет значительно уменьшить габариты блока питания. Нагрузкой преобразователя и одновременно его управляющим элементом является тороидальный трансформатор (обозначенный в схеме L1) со своими тремя обмотками, из них две управляющие обмотки (каждая по два витка) и одна рабочая (9 витков). Транзисторные ключи открываются противофазно от положительных импульсов с управляющих обмоток. Для этого управляющие обмотки включены в базы транзисторов противофазно (на рис.2 начало обмоток обозначены точками). Отрицательные выбросы напряжения с этих обмоток гасятся диодами D5, D7. Открытие каждого ключа вызывает наводку импульсов в двух противоположных обмотках, в том числе и в рабочей обмотке. Переменное напряжение с рабочей обмотки подается на люминесцентною лампу через последовательную цепь, состоящую из: L3 - нити накала лампы -С5 (3,3 нФ 1200 В) - нити накала лампы - С7 (47 нФ/400 В). Величины индуктивностей и емкостей этой цепи подобраны так, что в ней возникает резонанс напряжений при неизменной частоте преобразователя. При резонансе напряжений в последовательной цепи, индуктивное и емкостное сопротивления равны, сила тока в цепи максимальна, а напряжение на реактивных элементах L и С может значительно превышать прикладываемое напряжение. Падение напряжения на С5, в этой последовательной резонансной цепи, в 14 раз больше, чем на С7, так как емкость С5 в 14 раз меньше и его емкостное сопротивление в 14 раз больше. Следовательно, перед зажиганием люминесцентной лампы максимальный ток в резонансной цепи разогревает обе нити накала, а большое резонансное напряжение на конденсаторе С5 (3,3 нФ/1200 В), включенного параллельно лампе, зажигает лампу. Обратите внимания на максимально допустимые напряжения на конденсаторах С5=1200 В и С7= 400 В. Такие величины подобраны неслучайно. При резонансе напряжение на С5 достигает около 1 кВ и он должен его выдерживать. Зажженная лампа резко уменьшает свое сопротивление и блокирует (закорачивает) конденсатор С5. С резонансной цепи исключается емкость С5, и резонанс напряжений в цепи прекращается, но уже зажженная лампа продолжает светиться, а дроссель L2 своей индуктивностью ограничивает ток в зажженной лампе. При этом преобразователь продолжает работать в автоматическом режиме, не меняя свою частоту с момента запуска. Весь процесс зажигания длится меньше 1 с. Следует отметить, что на люминесцентную лампу все время подается переменное напряжение. Это лучше, чем постоянное, так как обеспечивает равномерный износ эмиссионных способностей нитей накаливания и этим увеличивает срок ее службы. При питании ламп от постоянного тока срок ее службы уменьшается на 50%, поэтому постоянное напряжения на газоразрядные лампы не подают.

Назначения элементов преобразователя.
Типы радиоэлементов указаны на принципиальной схеме (рис.2).
1. EN13003A- транзисторные ключи (на монтажной схеме производители их почему-то не обозначили). Это биполярные высоковольтные транзисторы средней мощности, n-p-n проводимости, корпус ТО-126, их аналоги MJE13003 или КТ8170А1 (400 В; 1,5 А; в импульсе 3 А), можно и КТ872А (1500 В; 8 А; корпус Т26а), но по габаритам они больше. В любом случае надо правильно определить выходы БКЭ, так как у разных производителей могут быть разные их последовательности, даже у одного и того же аналога.
2. Тороидальный ферритовый трансформатор, обозначенный производителем L1, размеры кольца 11x6x4,5, вероятная магнитная проницаемость 2000, имеет 3 обмотки, две из них по 2 витка и одна 9 витков.
3. Все диоды D1-D7 однотипные 1N4007 (1000 В, 1 А), из них диоды D1-D4 - выпрямительный мост, D5, D7 - гасят отрицательные выбросы управляющего импульса, a D6 - разделяет источники питания.
4. Цепочка R1СЗ обеспечивает задержку пуска преобразователя с целью «мягкого пуска» и не допущения броска пускового тока.
5. Симметричный динистор Z типа DB3 Uзс.max=32 В; Uoc=5 В; Uнеотп.и.max=5 В) обеспечивает первоначальный запуск преобразователя.
6. R3, R4, R5, R6 - ограничительные резисторы.
7. С2, R2 - демпферные элементы, предназначенные для гашения выбросов транзисторного ключа в момент его закрытия.
8. Дроссель L1 состоит из двух склеенных между собой Ш-образных ферритовых половинок. Вначале дроссель участвует в резонансе напряжений (совместно с С5 и С7) для зажигания лампы, а после зажигания своей индуктивностью гасит ток в цепи люминесцентной лампы, так как зажженная лампа резко уменьшает свое сопротивление.
9. С5 (3,3 нФ/1200 В), С7 (47 нФ/400 В) - конденсаторы в цепи люминесцентной лампы, участвующие в ее зажигании (через резонанс напряжений), а после зажигания С7 поддерживает свечения.
10. С1 - сглаживающий электролитический конденсатор.
11. Дроссель с ферритовым сердечником L4 и конденсатор С6 составляют заградительный фильтр, не пропускающий импульсные помехи преобразователя в питающую электросеть.
12. F1 - мини-предохранитель в стеклянном корпусе на 1 А, находится вне монтажной платы.

Ремонт.
Перед тем как ремонтировать электронный балласт, необходимо «добраться» до его монтажной платы, для этого достаточно ножом разъединить две составные части цоколя. При ремонте платы под напряжением будьте осторожны, так как ее радиоэлементы находятся под фазным напряжением!

Перегорание (обрыв) накальных спиралей люминесцентной лампы , при этом электронный балласт остается исправным. Это типичная неисправность. Восстановить спираль невозможно, а стеклянные люминесцентные колбы к таким лампам отдельно не продаются. Какой же выход? Или приспособить исправный балласт к 20-ватному светильнику, имеющему прямую стеклянную лампу, вместо его «родного» дросселя (светильник будет работать надежнее и без гула) или использовать элементы платы как запчасти. Отсюда рекомендация: закупайте однотипные компактные люминесцентные лампы - легче будет ремонтировать.

Трещины в пайке монтажной платы. Причина их появления - периодическое нагревание и последующее, после выключения, остывание места пайки. Нагревается место пайки от элементов, которые греются (спирали люминесцентной лампы, транзисторные ключи). Такие трещины могут проявиться после нескольких лет эксплуатации, т.е. после многократного нагревания и остывания места пайки. Устраняется неисправность повторной пайкой трещины.

Повреждение отдельных радиоэлементов. Отдельные радиоэлементы могут повредиться как от трещин в пайке, так и от скачков напряжения в питающей электросети. Хотя в схеме и есть предохранитель, но он не защитит радиоэлементы от скачков напряжений, как это мог бы сделать варистор. Предохранитель сгорит от пробоев радиоэлементов. Безусловно, самым слабым местом из всех радиоэлементов данного устройства являются транзисторы.

Радiоаматор №1, 2009г.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Биполярный транзистор

MJE13003A

2 N13003A, КТ8170А1, КТ872А В блокнот
D1-D7 Выпрямительный диод

1N4007

7 В блокнот
Z Динистор 1 В блокнот
C1 Электролитический конденсатор 100 мкФ 400 В 1 В блокнот
C2, C3 Конденсатор 27 нФ 100 В 2 В блокнот
C5 Конденсатор 3.3 нФ 1200 В 1 В блокнот
C6 Конденсатор 0.1 мкФ 400 В 1 В блокнот
C7 Конденсатор 47 нФ 400 В 1 В блокнот
R1, R2 Резистор

1.0 Ом

2

Люминесцентные лампы подключаются в соответствии с несколько более сложной схемой по сравнению со своими ближайшими «родственниками» — лампами накаливания. Для зажигания ламп люминесцентного типа, в цепь должны быть включены пусковые устройства, от качества которых напрямую зависит срок эксплуатации светильников.

Чтобы разобраться в особенностях схем, надо в первую очередь изучить устройство и механизм действия подобных приборов.

Каждый из таких приборов является герметичной колбой, наполненной специальной смесью газов. При этом смесь рассчитана таким образом, чтобы на ионизацию газов уходило гораздо меньшее по сравнению с обыкновенными лампами накаливания количество энергии, что позволяет заметно на освещении.

Чтобы люминесцентная лампа постоянно давала свет, в ней должен поддерживаться тлеющий разряд. Для обеспечения такового осуществляется подача требуемого напряжения на электроды лампочки. Главная проблема заключается в том, что разряд может появиться только при подаче напряжения, существенно превышающего рабочее. Однако и эту проблему производители ламп с успехом решили.

Электроды установлены по обеим сторонам люминесцентной лампы. Они принимают напряжение, благодаря которому и поддерживается разряд. У каждого электрода есть по два контакта. С ними соединяется источник тока, благодаря чему обеспечивается прогревание окружающего электроды пространства.

Таким образом, люминесцентная лампа зажигается после прогрева ее электродов. Для этого они подвергаются воздействию высоковольтного импульса, и лишь затем в действие вступает рабочее напряжение, величина которого должна быть достаточной для поддержания разряда.

Световой поток, лм Светодиодная лампа, Вт Контактная люминисцентная лампа, Вт Лампа накаливания, Вт
50 1 4 20
100 5 25
100-200 6/7 30/35
300 4 8/9 40
400 10 50
500 6 11 60
600 7/8 14 65

Под воздействием разряда газ в колбе начинает излучать ультрафиолетовый свет, невосприимчивый человеческим глазом. Чтобы свет стал видимым человеку, внутренняя поверхность колбы покрывается люминофором. Это вещество обеспечивает смещение частотного диапазона света в видимый спектр. Путем изменения состава люминофора, меняется и гамма цветовых температур, благодаря чему обеспечивается широкий ассортимент люминесцентных ламп.

Лампы люминесцентного типа, в отличие от простых ламп накаливания, не могут просто включаться в электрическую сеть. Для появления дуги, как отмечалось, должны прогреться электроды и появиться импульсное напряжение. Эти условия обеспечиваются при помощи специальных балластов. Наибольшее распространение получили балласты электромагнитного и

Цены на люминесцентные лампы

Классическое подключение через электромагнитный балласт

Особенности схемы

В соответствии с этой схемой в цепь включается дроссель. Также в составе схемы обязательно присутствует стартер.

Стартер для люминесцентных ламп — Philips Ecoclick StartersS10 220-240V 4-65W

Последний представляет собой маломощный неоновый источник света. Устройство оснащено биметаллическими контактами и питается от электросети с переменными значениями тока. Дроссель, стартерные контакты и электродные нити подключаются последовательно.

Вместо стартера в схему может включаться обыкновенная кнопка от электрозвонка. В данном случае напряжение будет подаваться путем удерживания кнопки звонка в нажатом положении. Кнопку нужно отпустить после зажигания светильника.

Порядок действия схемы с балластом электромагнитного типа выглядит следующим образом:

  • после включения в сеть, дроссель начинает накапливать электромагнитную энергию;
  • через стартерные контакты обеспечивается поступление электричества;
  • ток устремляется по вольфрамовым нитям нагрева электродов;
  • электроды и стартер нагреваются;
  • происходит размыкание контактов стартера;
  • аккумулированная дросселем энергия высвобождается;
  • величина напряжения на электродах меняется;
  • люминесцентная лампа дает свет.

В целях повышения показателя полезного действия и уменьшения помех, возникающих в процессе включения лампы, схема комплектуется двумя конденсаторами. Один из них (меньший) размещается внутри стартера. Его главная функция заключается в погашении искр и улучшении неонового импульса.

Среди ключевых преимуществ схемы с балластом электромагнитного типа можно выделить:

  • надежность, проверенную временем;
  • простоту;
  • доступную стоимость.
  • Недостатков, как показывает практика, больше, чем преимуществ. Среди их числа нужно выделить:
  • внушительный вес осветительного прибора;
  • продолжительное время включения светильника (в среднем до 3 секунд);
  • низкую эффективность системы при эксплуатации на холоде;
  • сравнительно высокое потребление энергии;
  • шумную работу дросселя;
  • мерцание, негативно воздействующее на зрение.

Порядок подключения

Подсоединение лампы по рассмотренной схеме выполняется с задействованием стартеров. Далее будет рассмотрен пример установки одного светильника с включением в схему стартера модели S10. Это современное устройство имеет невозгораемый корпус и высококачественную конструкцию, что делает его лучшим в своей нише.

Главные задачи стартера сводятся к:

  • обеспечению включения лампы;
  • пробою газового промежутка. Для этого цепь разрывается после довольно длительного нагрева электродов лампы, что приводит к выбросу мощного импульса и непосредственно пробою.

Дроссель используется для выполнения таких задач:

  • ограничения величины тока в момент замыкания электродов;
  • генерации напряжения, достаточного для пробоя газов;
  • поддержания горения разряда на постоянном стабильном уровне.

В рассматриваемом примере подключается лампа на 40 Вт. При этом дроссель должен иметь аналогичную мощность. Мощность же используемого стартера равна 4-65 Вт.

Подключаем в соответствии с представленной схемой. Для этого делаем следующее.

Первый шаг

Параллельно подключаем стартер к штыревым боковым контактам на выходе люминесцентного светильника. Эти контакты представляют собой выводы нитей накаливания герметичной колбы.

Второй шаг

На оставшиеся свободными контакты подключаем .

Третий шаг

К питающим контактам подключаем конденсатор, опять-таки, параллельно. Благодаря конденсатору будет компенсироваться реактивная мощность и уменьшаться помехи в сети.

Подключение через современный электронный балласт

Особенности схемы

Современный вариант подключения. В схему включается электронный балласт – это экономное и усовершенствованное устройство обеспечивает гораздо более длительный срок службы люминесцентных ламп по сравнению с вышерассмотренным вариантом.

В схемах с электронным балластом люминесцентные лампы работают на повышенном напряжении (до 133 кГц). Благодаря этому свет получается ровным, без мерцаний.

Современные микросхемы позволяют собирать специализированные пусковые устройства с низким энергопотреблением и компактными размерами. Это дает возможность помещать балласт прямо в цоколь лампы, что делает реальным производство малогабаритных осветительных приборов, вкручивающихся в обыкновенный патрон, стандартный для ламп накаливания.

При этом микросхемы не только обеспечивают светильники питанием, но и плавно подогревают электроды, повышая их эффективность и увеличивая срок службы. Именно такие люминесцентные лампы можно использовать в комплексе с – устройствами, предназначенными для плавного регулирования яркости света лампочек. К люминесцентным лампам с электромагнитными балластами диммер не подключишь.

По конструкции электронный балласт является преобразователем электронапряжения. Миниатюрный инвертор трансформирует постоянный ток в высокочастотный и переменный. Именно он и поступает на нагреватели электродов. С повышением частоты интенсивность нагрева электродов уменьшается.

Включение преобразователя организовано таким образом, чтобы сначала частота тока находилась на высоком уровне. Люминесцентная лампочка, при этом, включается в контур, резонансная частота которого значительно меньше начальной частоты преобразователя.

Далее частота начинает постепенно уменьшаться, а напряжение на лампе и колебательном контуре увеличиваться, за счет чего контур приближается к резонансу. Интенсивность нагрева электродов также увеличивается. В какой-то момент создаются условия, достаточные для создания газового разряда, в результате возникновения которого лампа начинает давать свет. Осветительный прибор замыкает контур, режим работы которого при этом изменяется.

При использовании электронных балластов схемы подключения ламп составлены так, что у регулирующего устройства появляется возможность подстраиваться под характеристики лампочки. К примеру, спустя определенный период использования люминесцентные лампы требуют более высокого напряжения для создания начального разряда. Балласт сможет подстроиться под такие изменения и обеспечить необходимое качество освещения.

Таким образом, среди многочисленных преимуществ современных электронных балластов нужно выделить следующие моменты:

  • высокую экономичность эксплуатации;
  • бережный прогрев электродов осветительного прибора;
  • плавное включение лампочки;
  • отсутствие мерцания;
  • возможность использования в условиях низких температур;
  • самостоятельную адаптацию под характеристики светильника;
  • высокую надежность;
  • небольшой вес и компактные размеры;
  • увеличение срока эксплуатации осветительных приборов.

Недостатков всего 2:

  • усложненная схема подключения;
  • более высокие требования к правильности выполнения монтажа и качеству используемых комплектующих.

Цены на электронные балласты для люминесцентных ламп

Электронный балласт для люминесцентных ламп

Порядок подключения

Все необходимые коннекторы и провода обычно идут в комплекте с электронным балластом. Со схемой подключения вы можете ознакомиться на представленном изображении. Также подходящие схемы приводятся в инструкциях к балластам и непосредственно осветительным приборам.

В такой схеме лампа включается в 3 основные стадии, а именно:

  • электроды прогреваются, благодаря чему обеспечивается более бережный и плавный пуск и сохраняется ресурс прибора;
  • происходит создание мощного импульса, требующегося для поджига;
  • значение рабочего напряжение стабилизируется, после чего напряжение подается на светильник.

Современные схемы подсоединения ламп исключают необходимость применения стартера. Благодаря этому риск перегорания балласта в случае запуска без установленной лампы исключается.

Отдельного внимания заслуживает схема подсоединения сразу двух люминесцентных лампочек к одному балласту. Приборы подключаются последовательно. Для выполнения работы нужно подготовить:

  • индукционный дроссель;
  • стартеры в количестве двух штук;
  • непосредственно люминесцентные лампы.

Последовательность подключения

Первый шаг. К каждой лампочке подсоединяется стартер. Соединение параллельное. В рассматриваемом примере стартер подключаем на штыревой выход с обоих торцов осветительного прибора.

Второй шаг. Свободные контакты подсоединяются к электросети. При этом соединение выполняется последовательно, посредством дросселя.

Третий шаг. Параллельно к контактам осветительного прибора подсоединяются конденсаторы. Они будут уменьшать выраженность помех в электросети и компенсировать возникающую реактивную мощность.

Важный момент! В обычных бытовых выключателях, в особенности это характерно для бюджетных моделей, контакты могут залипать под воздействием повышенных стартовых токов. Ввиду этого для использования в комплексе с люминесцентными осветительными приборами рекомендуется использовать только специально предназначенные для этого высококачественные .

Вы ознакомились с особенностями разных схем подключения ламп люминесцентного типа и теперь сможете самостоятельно справиться с установкой и заменой таких осветительных приборов.

Удачной работы!

Видео – Схема подключения люминесцентных ламп

Несмотря на небольшие размеры энергосберегающих ламп, в них много электронных компонентов. По своему устройству это обычная трубчатая люминесцентная лампа с миниатюрной колбой, но только свернутой в спираль или иную пространственную компактную линию. Ее поэтому называют компактной люминесцентной лампой (в сокращении КЛЛ).

И для нее характерны все те же самые проблемы и неисправности, что и для больших трубчатых лампочек. Но электронный балласт лампочки, которая перестала светить, скорее всего, из-за перегоревшей спирали, обычно сохраняет свою работоспособность. Поэтому его можно использовать для каких-либо целей как импульсный блок питания (в сокращении ИБП), но с предварительной доработкой. Об этом и пойдет речь далее. Наши читатели узнают, как сделать блок питания из энергосберегающей лампы.

В чем разница между ИБП и электронным балластом

Сразу предупредим тех, кто ожидает получение мощного источника питания из КЛЛ – большую мощность получить в результате простой переделки балласта нельзя. Дело в том, что в катушках индуктивности, которые содержат сердечники, рабочая зона намагничивания жестко ограничена конструкцией и свойствами намагничивающего напряжения. Поэтому импульсы этого напряжения, создаваемые транзисторами, точно подобраны и определены элементами схемы. Но такой блок питания из ЭПРА вполне достаточен для питания светодиодной ленты. Тем более что импульсный блок питания из энергосберегающей лампы соответствует ее мощности. А она может быть до 100 Вт.

Наиболее распространенная схема балласта КЛЛ построена по схеме полумоста (инвертора). Это автогенератор на основе трансформатора TV. Обмотка TV1-3 намагничивает сердечник и выполняет при этом функцию дросселя для ограничения тока через лампу EL3. Обмотки TV1-1 и TV1-2 обеспечивают положительную обратную связь для появления напряжения, управляющего транзисторами VT1и VT2. На схеме красным цветом показана колба КЛЛ с элементами, которые обеспечивают ее запуск.

Пример распространенной схемы балласта КЛЛ

Все катушки индуктивности и емкости в схеме подобраны так, чтобы получить в лампе точно дозированную мощность. С ее величиной связана работоспособность транзисторов. А поскольку они не имеют радиаторов, не рекомендуется стремиться получать от переделанного балласта значительную мощность. В трансформаторе балласта нет вторичной обмотки, от которой питается нагрузка. В этом главное отличие его от ИБП.

В чем суть реконструкции балласта

Чтобы получить возможность подключения нагрузки к отдельной обмотке, надо либо намотать ее на дросселе L5, либо применить дополнительный трансформатор. Переделка балласта в ИБП предусматривает:



Для дальнейшей переделки электронного балласта в блок питания из энергосберегающей лампы надо принять решение относительно трансформатора:

  • использовать имеющийся дроссель, доработав его;
  • либо применить новый трансформатор.

Трансформатор из дросселя

Далее рассмотрим оба варианта. Для того чтобы воспользоваться дросселем из электронного балласта, его надо выпаять из платы и затем разобрать. Если в нем применен Ш-образный сердечник, он содержит две одинаковые части, которые соединены между собой. В рассматриваемом примере для этой цели применена оранжевая клейкая лента. Она аккуратно удаляется.
Удаление ленты, стягивающей половинки сердечника

Половинки сердечника обычно склеены так, чтобы между ними оставался зазор. Он служит для оптимизации намагничивания сердечника, замедляя этот процесс и ограничивая скорость нарастания тока. Берем наш импульсный паяльник и нагреваем сердечник. Прикладываем его к паяльнику местами соединения половинок.


Разобрав сердечник, получаем доступ к катушке с намотанным проводом. Обмотку, которая уже есть на катушке, отматывать не рекомендуется. От этого изменится режим намагничивания. Если свободное место между сердечником и катушкой позволяет обернуть один слой стеклоткани для улучшения изоляции обмоток друг от друга, надо сделать это. А потом намотать десять витков вторичной обмотки проводом подходящей толщины. Поскольку мощность нашего блока питания будет небольшой, толстый провод не нужен. Главное, чтобы он поместился на катушке, и половинки сердечника наделись на него.


Намотав вторичную обмотку, собираем сердечник и закрепляем половинки клейкой лентой. Предполагаем, что после тестирования БП станет понятно, какое напряжение создается одним витком. После тестирования разберем трансформатор и добавим необходимое число витков. Обычно переделка имеет целью сделать преобразователь напряжения с выходом 12 В. Это позволяет получить при использовании стабилизации зарядное устройство для аккумулятора. На такое же напряжение можно сделать и из энергосберегающей лампы, а также зарядить фонарик с питанием от аккумулятора.

Поскольку трансформатор нашего ИБП, скорее всего, придется доматывать, впаивать его в плату не стоит. Лучше припаять проводки, торчащие из платы, и к ним на время тестирования припаять выводы нашего трансформатора. Концы выводов вторичной обмотки надо очистить от изоляции и покрыть припоем. Затем либо на отдельной панельке, либо прямо на выводах намотанной обмотки надо собрать выпрямитель на высокочастотных диодах по схеме моста. Для фильтрации в процессе измерения напряжения достаточно конденсатора 1 мкФ 50 В.



Тестирование ИБП

Но перед присоединением к сети 220 В последовательно с нашим блоком, переделанным своими руками из лампы, обязательно соединяется мощный резистор. Это мера соблюдения безопасности. Если через импульсные транзисторы в блоке питания потечет ток короткого замыкания, резистор его ограничит. Очень удобным резистором в таком случае может стать лампочка накаливания на 220 В. По мощности достаточно применить 40–100-ваттную лампу. При коротком замыкании в нашем устройстве лампочка будет светиться.


Далее присоединяем к выпрямителю щупы мультиметра в режиме измерения постоянного напряжения и подаем напряжение 220 В на электрическую цепь с лампочкой и платой источника питания. Предварительно обязательно изолируются скрутки и открытые токоведущие части. Для подачи напряжения рекомендуется применить проводной выключатель, а лампочку вложить в литровую банку. Иногда они при включении лопаются, а осколки разлетаются по сторонам. Обычно испытания проходят без проблем.

Более мощный ИБП с отдельным трансформатором

Они позволяют определить напряжение и необходимое число витков. Трансформатор дорабатывается, блок снова испытывается, и после этого его можно применить как компактный источник питания, который намного меньше аналога на основе обычного трансформатора 220 В со стальным сердечником.

Чтобы увеличить мощность источника питания, надо применить отдельный трансформатор, сделанный аналогично из дросселя. Его можно извлечь из лампочки большей мощности, сгоревшей полностью вместе с полупроводниковыми изделиями балласта. За основу берется та же схема, которая отличается присоединением дополнительного трансформатора и некоторых других деталей, изображенных красными линиями.


Выпрямитель, показанный на изображении, содержит меньше диодов по сравнению с выпрямительным мостом. Но для его работы потребуется больше витков вторичной обмотки. Если они не вмещаются в трансформатор, надо применить выпрямительный мост. Более мощный трансформатор делается, например, для галогенок. Кто использовал обычный трансформатор для системы освещения с галогенками, знает, что они питаются достаточно большим по величине током. Поэтому трансформатор получается громоздким.

Если транзисторы разместить на радиаторах, мощность одного блока питания можно заметно увеличить. А по весу и габаритам даже несколько таких ИБП для работы с галогенными светильниками получатся меньше и легче одного трансформатора со стальным сердечником равной им мощности. Другим вариантом использования работоспособных балластов экономок может быть их реконструкция для светодиодной лампы. Переделка энергосберегающей лампы в светодиодную конструкцию очень проста. Лампа отсоединяется, а вместо нее подключается диодный мост.

На выходе моста подключается определенное количество светодиодов. Их можно подключить между собой последовательно. Важно, чтобы ток светодиода равнялся току в КЛЛ. можно назвать ценным полезным ископаемым в эпоху светодиодного освещения. Они могут найти применение даже после завершения своего срока службы. И теперь читатель знает детали этого применения.