» »

Что такое угол многоугольника. Урок "Многоугольники. Виды многоугольников" в рамках технологии "Развитие критического мышления через чтение и письмо"

12.10.2019

Что называется многоугольником? Виды многоугольников. МНОГОУГОЛЬНИК, плоская геометрическая фигура с тремя или более сторонами, пересекающимися в трех или более точках (вершинах). Определение. Многоугольник - это геометрическая фигура, ограниченная со всех сторон замкнутой ломаной линией, состоящая из трех и более отрезков (звеньев). Треугольник безусловно является многоугольником. А многоугольник — это фигура, у которой от пяти углов и больше.

Определение. Четырехугольник - это плоская геометрическая фигура, состоящая из четырех точек (вершин четырехугольника) и четырех последовательно соединяющих их отрезков (сторон четырехугольника).

Прямоугольник - это четырехугольник, у которого все углы прямые. Они называются в соответствии с числом сторон или вершин: ТРЕУГОЛЬНИК (трехсторонний); ЧЕТЫРЕХУГОЛЬНИК (четырехсторонний); ПЯТИУГОЛЬНИК (пятисторонний) и т.д. В элементарной геометрии М. называется фигура,ограниченная прямыми линиями, называемыми сторонами. Точки, в которыхстороны пересекаются, называются вершинами. У многоугольника углов больше, чем три. Так принято или условлено.

Треугольник — он и есть треугольник. И четырехугольник тоже не многоугольник, да и четырехугольником не зовется — это либо квадрат, либо ромб, либо трапеция. Тот факт многоугольник с тремя сторонами и тремя углами имеет собственное название «треугольник» не лишает его статуса многоугольника.

Смотреть что такое «МНОГОУГОЛЬНИК» в других словарях:

Мы узнаем, что эта фигура ограничена замкнутой ломаной, которая в свою очередь бывает простой, замкнутой. Поговорим о том, что многоугольники бывают плоскими, правильными, выпуклыми. Кто не слышал о загадочном Бермудском треугольнике, в котором бесследно исчезают корабли и самолеты? А ведь знакомый нам с детства треугольник таит в себе немало интересного и загадочного.

Хотя конечно фигура, состоящая из трёх углов тоже может считаться многоугольником

Но для характеристики фигуры этого не достаточно. Ломаной А1А2…Аn называется фигура, которая состоит из точек А1,А2,…Аn и соединяющих их отрезков А1А2, А2А3,…. Простая замкнутая ломаная называется многоугольником, если ее соседние звенья не лежат на одной прямой (рис.5). Подставьте в слове “многоугольник” вместо части “много” конкретное число, например 3. Вы получите треугольник. Заметим, что, сколько углов, столько и сторон, поэтому эти фигуры вполне можно было бы назвать и многосторонниками.

Пусть А1А2…А n – данный выпуклый многоугольник и n>3. Проведем в нем (из одной вершины) диагонали

Сумма углов каждого треугольника равна 1800, а число этих треугольников n – 2. Поэтому сумма углов выпуклого n – угольника А1А2…А n равна 1800* (n — 2). Теорема доказана. Внешним углом выпуклого многоугольника при данной вершине называется угол, смежный внутреннему углу многоугольника при этой вершине.

В четырехугольнике, проведите прямую так, чтобы она разделила его на три треугольника

У четырехугольника никогда на одной прямой не лежат три вершины. Слово “многоугольник” указывает на то, что у всех фигур этого семейства “много углов”. Ломаная называется простой, если она не имеет самопересечений (рис.2,3).

Длиной ломаной называется сумма длин ее звеньев (рис.4). В случае n=3 теорема справедлива. Так что квадрат можно назвать по-другому – правильным четырехугольником. Такие фигуры давно интересовали мастеров, украшавших здания.

Число вершин равняется числусторон. Ломаная называется замкнутой, если у нее концы совпадают. Из них получались красивые узоры, например на паркете. Наша пятиконечная звезда – правильная пятиугольная звезда.

Но не из всех правильных многоугольников можно было сложить паркет. Рассмотрим подробнее два вида многоугольников: треугольник и четырехугольник. Многоугольник у которого все внутренние углы равны называется правильным. Многоугольники называются в соответствии с числом его сторон или вершин.

Словарь медицинских терминов

Толковый словарь русского языка. Д.Н. Ушаков

многоугольник

многоугольника, м. (мат.). Плоская фигура, ограниченная тремя, четырьмя и т. д. прямыми линиями.

Толковый словарь русского языка. С.И.Ожегов, Н.Ю.Шведова.

многоугольник

А, м. В математике: геометрическая фигура, ограниченная замкнутой ломаной линией.

Новый толково-словообразовательный словарь русского языка, Т. Ф. Ефремова.

многоугольник

м. Геометрическая фигура, ограниченная замкнутой ломаной линией, звенья которой образуют более четырех углов.

Энциклопедический словарь, 1998 г.

многоугольник

МНОГОУГОЛЬНИК (на плоскости) геометрическая фигура, ограниченная замкнутой ломаной линией, звенья которой называются сторонами многоугольника, а их концы - вершинами многоугольника. По числу вершин различают треугольники, четырехугольники и т.д. Многоугольник называется выпуклым, если он весь лежит по одну сторону от прямой, несущей любую из его сторон, и невыпуклым - в противном случае. Многоугольник называется правильным, если все его стороны и углы равны.

Многоугольник

замкнутая ломаная линия. Подробнее, М. ≈ линия, которая получается, если взять n любых точек A1, A2, ..., An и соединить прямолинейным отрезком каждую из них с последующей, а последнюю ≈ с первой (см. рис. 1 , а). Точки A1, A2, ..., An называются вершинами М., а отрезки A1A2, А2А3, ..., An-1An, AnA1 ≈ его сторонами. Далее рассматриваются только плоские М. (т. е. предполагается, что М. лежит в одной плоскости). М. может сам себя пересекать (см. рис. 1 , б), причём точки самопересечения могут не быть его вершинами.

Существуют и другие точки зрения на то, что считать М. Многоугольником можно называть связную часть плоскости, вся граница которой состоит из конечного числа прямолинейных отрезков, называемых сторонами многоугольника. М. в этом смысле может быть и многосвязной частью плоскости (см. рис. 1 , г), т. е. такой М. может иметь «многоугольные дыры». Рассматриваются также бесконечные М. ≈ части плоскости, ограниченные конечным числом прямолинейных отрезков и конечным числом полупрямых.

Дальнейшее изложение опирается на данное выше первое определение М. Если М. не пересекает сам себя (см., например, рис. 1 , а и б), то он разделяет совокупность всех точек плоскости, на нем не лежащих, на две части ≈ конечную (внутреннюю) и бесконечную (внешнюю) в том смысле, что если две точки принадлежат одной из этих частей, то их можно соединить друг с другом ломаной, не пересекающей М., а если разным частям, то нельзя. Несмотря на совершенную очевидность этого обстоятельства, строгий его вывод из аксиом геометрии довольно труден (т. н. теорема Жордана для М.). Внутренняя по отношению к М. часть плоскости имеет определённую площадь. Если М. ≈ самопересекающийся, то он разрезает плоскость на определённое число кусков, из которых один бесконечный (называемый внешним по отношению к М.), а остальные конечные односвязные (называются внутренними), причём граница каждого из них есть некоторый самонепересекающийся М., стороны которого есть целые стороны или части сторон, а вершины ≈ вершины или точки самопересечения данного М. Если каждой стороне М. приписать направление, т. е. указать, какую из двух определяющих её вершин мы будем считать её началом, а какую ≈ концом, и притом так, чтобы начало каждой стороны было концом предыдущей, то получится замкнутый многоугольный путь, или ориентированный М. Площадь области, ограниченной самопересекающимся ориентированным М., считается положительной, если контур М. обходит эту область против часовой стрелки, т. е. внутренность М. остаётся слева от идущего по этому пути, и отрицательной ≈ в противоположном случае. Пусть М. ≈ самопересекающийся и ориентированный; если из точки, лежащей во внешней по отношению к нему части плоскости, провести прямолинейный отрезок к точке, лежащей внутри одного из внутренних его кусков, и М. пересекает этот отрезок р раз слева направо и q раз справа налево, то число р ≈ q (целое положительное, отрицательное или нуль) не зависит от выбора внешней точки и называется коэффициентом этого куска. Сумма обычных площадей этих кусков, помноженных на их коэффициенты, считается «площадью» рассматриваемого замкнутого пути (ориентированного М.). Так определяемая «площадь замкнутого пути» играет большую роль в теории математических приборов (планиметр и др.); она получается там обычно в виде интеграла ═(в полярных координатах r, w) или ═(в декартовых координатах х, у), где конец радиус-вектора r или ординаты y один раз обегает этот путь.

Сумма внутренних углов любого самонепересекающегося М. с n сторонами равна (n ≈ 2)180╟. М. называется выпуклым (см. рис. 1 , а), если никакая сторона М., будучи неограниченно продолженной, не разрезает М. на две части. Выпуклый М. можно охарактеризовать также следующим свойством: прямолинейный отрезок, соединяющий любые две точки плоскости, лежащие внутри М., не пересекает М. Всякий выпуклый М. ≈ самонепересекающийся, но не наоборот. Например, на рис. 1 , б изображен самонепересекающийся М., который не является выпуклым, т. к. отрезок PQ, соединяющий некоторые его внутренние точки, пересекает М.

Важнейшие М.: треугольники, в частности прямоугольные, равнобедренные, равносторонние (правильные); четырёхугольники, в частности трапеции, параллелограммы, ромбы, прямоугольники, квадраты. Выпуклый М. называется правильным, если все его стороны равны и все внутренние углы равны. В древности умели по стороне или радиусу описанного круга строить при помощи циркуля и линейки правильные М. только в том случае, если число сторон М. равно m = 3 ╥ 2n, 4 ╥ 2n,5 ╥ 2n, 3 ╥ 5 ╥ 2n, где n ≈ любое положительное число или нуль. Немецкий математик К. Гаусс в 1801 показал, что можно построить при помощи циркуля и линейки правильный М., когда число его сторон имеет вид: m = 2n ╥ p1 ╥ p2 ╥ ... ╥ pk, где p1, p2, ... pk ≈ различные простые числа вида ═(s ≈ целое положительное число). До сих пор известны только пять таких р: 3, 5, 17, 257, 65537. Из теории Галуа (см. Галуа теория) следует, что никаких других правильных М., кроме указанных Гауссом, построить при помощи циркуля и линейки нельзя. Т. о., построение возможно при m = 3, 4, 5, 6, 8, 10, 12, 15 16, 17, 20, 24, 32, 34, ... и невозможно при m = 7, 9, 11, 13, 14, 18, 19, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, ...

В приведённой ниже таблице указаны радиус описанной окружности, радиус вписанной окружности и площадь правильного n-yгольника (для n = 3, 4, 5, 6, 8, 10), сторона которого равна k.

Радиус описанной окружности

Радиус вписанной окружности

Начиная с пятиугольника существуют также невыпуклые (самопересекающиеся, или звездчатые) правильные М., т. е. такие, у которых все стороны равны и каждая следующая из сторон повёрнута в одном и том же направлении и на один и тот же угол по отношению к предыдущей. Все вершины такого М. также лежат на одной окружности. Такова, например, пятиконечная звезда. На рис. 2 даны все правильные (как выпуклые, так и невыпуклые) М. от треугольника до семиугольника.

Лит. см. при ст. Многогранник.

Википедия

Многоугольник

Многоуго́льник - это геометрическая фигура, обычно определяемая как замкнутая ломаная .

Существуют три различных варианта определения многоугольника:

  • Плоская замкнутая ломаная - наиболее общий случай;
  • Плоская замкнутая ломаная без самопересечений, любые два соседних звена которой не лежат на одной прямой;
  • Часть плоскости, ограниченная замкнутой ломаной без самопересечений - плоский многоугольник

В любом случае вершины ломаной называются вершинами многоугольника, а её отрезки - сторонами многоугольника.

Многоугольник (значения)

  • Многоугольник в геометрии
  • Каменный многоугольник в мерзлотоведении

Примеры употребления слова многоугольник в литературе.

Джилмен был даже рад погрузиться в сумрачную бездну с ее привычным приглушенным ревом, хотя и там настойчивое преследование двух существ, похожих на скопление переливающихся пузырей и маленький многоугольник со сторонами, меняющимися словно в калейдоскопе, вызывало особенно острое ощущение угрозы и необычайно раздражало.

Сумрачные ревущие пропасти -- зеленый каменистый склон холма -- блистающая всеми цветами радуги терраса -- притяжение неизвестных планет -- черная спираль эфира -- черный человек -- грязный переулок и скрипучая лестница -- старая колдунья и маленькая косматая тварь с длинными клыками -- скопление пузырей и маленький многоугольник -- странный загар -- ранки на руке -- что-то маленькое и бесформенное в руках у старухи -- покрытые грязью ноги -- сказки и страхи суеверных иностранцев -- что все это, наконец, означало?

Могу ли я из прямоугольной текстовой рамки сделать многоугольник в форме звезды?

Многогранник, основание к-рого представляет собой многоугольник , а остальные грани - треугольники с общей вершиной.

Нужно было, следовательно, наметить, где и как конкретно расположить резервы на Западном направлении, причем особенно беспокойным местом оставался как раз неправильный по форме многоугольник Калининского фронта.

Перед вами - неправильный, вдавшийся резко на север многоугольник , именовавшийся Маньчжурией.

Если графическая рамка имеет форму овала или многоугольника

Если текстовая рамка имеет форму овала или многоугольника , то эта опция становится недоступной.

Берутся три или больше предмета с одинаковой массой, помещаются в вершинах равностороннего многоугольника и разгоняются до одинаковой угловой скорости относительно центра их общей массы.

Почти вопреки своей воле он парил по сумеречной пропасти вслед за скоплением переливающихся пузырей и маленьким многоугольником , когда заметил, что края находившихся в стороне от него гигантских призм образуют на удивление правильные повторяющиеся углы.

Ровные, девственные, белые, кое-где искореженные подвижками, похожие на бесчисленные многоугольники , окантованные черными полосками открытой воды.

Эх, видеть бы аргусовым оком многоугольники коралла и волоконцы, вплетенные в грани, и внутренность волокон.

Это отполированные ветрами глинистые такыры, растрескавшиеся на бесчисленное множество многоугольников , гладкие, словно каток, твердые, как бетон.

Вот фонтан фаллической формы, который виднелся то ли из-под арки, то ли из-под портика, с Нептуном, стоящим верхом на дельфине, ворота с колоннами, напоминавшими ассирийские, и опять арка неопределенной формы, что-то вроде нагромождения треугольников и многоугольников , причем верхушку каждого из них венчала фигурка животного - лося, обезьяны, льва.

Картинки могут располагаться не только в прямоугольных графических рамках, но и в видоизменяемых многоугольниках и овалах.

Треугольник, квадрат, шестиугольник - эти фигуры известны практически всем. Но вот о том, что такое правильный многоугольник, знает далеко не каждый. А ведь это все те же Правильным многоугольником называют тот, что имеет равные между собой углы и стороны. Таких фигур очень много, но все они имеют одинаковые свойства, и к ним применимы одни и те же формулы.

Свойства правильных многоугольников

Любой правильный многоугольник, будь то квадрат или октагон, может быть вписан в окружность. Это основное свойство часто используется при построении фигуры. Кроме того, окружность можно и вписать в многоугольник. При этом количество точек соприкосновения будет равняться количеству его сторон. Немаловажно, что окружность, вписанная в правильный многоугольник, будет иметь с ним общий центр. Эти геометрические фигуры подчинены одним теоремам. Любая сторона правильного n-угольника связана с радиусом описанной около него окружности R. Поэтому ее можно вычислить, используя следующую формулу: а = 2R ∙ sin180°. Через можно найти не только стороны, но и периметр многоугольника.

Как найти число сторон правильного многоугольника

Любой состоит из некоторого числа равных друг другу отрезков, которые, соединяясь, образуют замкнутую линию. При этом все углы образовавшейся фигуры имеют одинаковое значение. Многоугольники делятся на простые и сложные. К первой группе относятся треугольник и квадрат. Сложные многоугольники имеют большее число сторон. К ним также относят звездчатые фигуры. У сложных правильных многоугольников стороны находят путем вписывания их в окружность. Приведем доказательство. Начертите правильный многоугольник с произвольным числом сторон n. Опишите вокруг него окружность. Задайте радиус R. Теперь представьте, что дан некоторый n-угольник. Если точки его углов лежат на окружности и равны друг другу, то стороны можно найти по формуле: a = 2R ∙ sinα: 2.

Нахождение числа сторон вписанного правильного треугольника

Равносторонний треугольник - это правильный многоугольник. Формулы к нему применяются те же, что и к квадрату, и n-угольнику. Треугольник будет считаться правильным, если у него одинаковые по длине стороны. При этом углы равны 60⁰. Построим треугольник с заданной длиной сторон а. Зная его медиану и высоту, можно найти значение его сторон. Для этого будем использовать способ нахождения через формулу а = х: cosα, где х - медиана или высота. Так как все стороны треугольника равны, то получаем а = в = с. Тогда верным будет следующее утверждение а = в = с = х: cosα. Аналогично можно найти значение сторон в равнобедренном треугольнике, но х будет заданная высота. При этом проецироваться она должна строго на основание фигуры. Итак, зная высоту х, найдем сторону а равнобедренного треугольника по формуле а = в = х: cosα. После нахождения значения а можно вычислить длину основания с. Применим теорему Пифагора. Будем искать значение половины основания c: 2=√(х: cosα)^2 - (х^2) = √x^2 (1 - cos^2α) : cos^2α = x ∙ tgα. Тогда c = 2xtgα. Вот таким несложным способом можно найти число сторон любого вписанного многоугольника.

Вычисление сторон квадрата, вписанного в окружность

Как и любой другой вписанный правильный многоугольник, квадрат имеет равные стороны и углы. К нему применяются те же формулы, что и к треугольнику. Вычислить стороны квадрата можно через значение диагонали. Рассмотрим этот способ более детально. Известно, что диагональ делит угол пополам. Изначально его значение было 90 градусов. Таким образом, после деления образуются два Их углы при основании будут равны 45 градусов. Соответственно каждая сторона квадрата будет равна, то есть: а = в = с = д = е ∙ cosα = е√2: 2, где е - это диагональ квадрата, или основание образовавшегося после деления прямоугольного треугольника. Это не единственный способ нахождения сторон квадрата. Впишем эту фигуру в окружность. Зная радиус этой окружности R, найдем сторону квадрата. Будем вычислять ее следующим образом a4 = R√2. Радиусы правильных многоугольников вычисляют по формуле R = а: 2tg (360 o: 2n), где а - длина стороны.

Как вычислить периметр n-угольника

Периметром n-угольника называют сумму всех его сторон. Вычислить его несложно. Для этого необходимо знать значения всех сторон. Для некоторых видов многоугольников существуют специальные формулы. Они позволяют найти периметр намного быстрее. Известно, что любой правильный многоугольник имеет равные стороны. Поэтому для того, чтобы вычислить его периметр, достаточно знать хотя бы одну из них. Формула будет зависеть от количества сторон фигуры. В общем, она выглядит так: Р = an, где а - значение стороны, а n - количество углов. Например, чтобы найти периметр правильного восьмиугольника со стороной 3 см, необходимо умножить ее на 8, то есть Р = 3 ∙ 8 = 24 см. Для шестиугольника со стороной 5 см вычисляем так: Р = 5 ∙ 6 = 30 см. И так для каждого многоугольника.

Нахождение периметра параллелограмма, квадрата и ромба

В зависимости от того, сколько сторон имеет правильный многоугольник, вычисляется его периметр. Это намного облегчает поставленную задачу. Ведь в отличие от прочих фигур, в этом случае не нужно искать все его стороны, достаточно одной. По этому же принципу находим периметр у четырехугольников, то есть у квадрата и ромба. Несмотря на то что это разные фигуры, формула для них одна Р = 4а, где а - сторона. Приведем пример. Если сторона ромба или квадрата равна 6 см, то находим периметр следующим образом: Р = 4 ∙ 6 = 24 см. У параллелограмма равны только противоположные стороны. Поэтому его периметр находят, используя другой способ. Итак, нам необходимо знать длину а и ширину в фигуры. Затем применяем формулу Р = (а + в) ∙ 2. Параллелограмм, у которого равны все стороны и углы между ними, называется ромб.

Нахождение периметра равностороннего и прямоугольного треугольника

Периметр правильного можно найти по формуле Р = 3а, где а - длина стороны. Если она неизвестна, ее можно найти через медиану. В прямоугольном треугольнике равное значение имеют только две стороны. Основание можно найти через теорему Пифагора. После того как станут известны значения всех трех сторон, вычисляем периметр. Его можно найти, применяя формулу Р = а + в + с, где а и в - равные стороны, а с - основание. Напомним, что в равнобедренном треугольнике а = в = а, значит, а + в = 2а, тогда Р = 2а + с. Например, сторона равнобедренного треугольника равна 4 см, найдем его основание и периметр. Вычисляем значение гипотенузы по теореме Пифагора с = √а 2 + в 2 = √16+16 = √32 = 5,65 см. Вычислим теперь периметр Р = 2 ∙ 4 + 5,65 = 13,65 см.

Как найти углы правильного многоугольника

Правильный многоугольник встречается в нашей жизни каждый день, например, обычный квадрат, треугольник, восьмиугольник. Казалось бы, нет ничего проще, чем построить эту фигуру самостоятельно. Но это просто только на первый взгляд. Для того чтобы построить любой n-угольник, необходимо знать значение его углов. Но как же их найти? Еще ученые древности пытались построить правильные многоугольники. Они догадались вписать их в окружности. А потом на ней отмечали необходимые точки, соединяли их прямыми линиями. Для простых фигур проблема построения была решена. Формулы и теоремы были получены. Например, Эвклид в своем знаменитом труде «Начало» занимался решением задач для 3-, 4-, 5-, 6- и 15-угольников. Он нашел способы их построения и нахождения углов. Рассмотрим, как это сделать для 15-угольника. Сначала необходимо рассчитать сумму его внутренних углов. Необходимо использовать формулу S = 180⁰(n-2). Итак, нам дан 15-угольник, значит, число n равно 15. Подставляем известные нам данные в формулу и получаем S = 180⁰(15 - 2) = 180⁰ х 13 = 2340⁰. Мы нашли сумму всех внутренних углов 15-угольника. Теперь необходимо получить значение каждого из них. Всего углов 15. Делаем вычисление 2340⁰: 15 = 156⁰. Значит, каждый внутренний угол равен 156⁰, теперь при помощи линейки и циркуля можно построить правильный 15-угольник. Но как быть с более сложными n-угольниками? Много веков ученые бились над решением этой проблемы. Оно было найдено только лишь в 18-м веке Карлом Фридрихом Гауссом. Он смог построить 65537-угольник. С этих пор проблема официально считается полностью решенной.

Расчет углов n-угольников в радианах

Конечно, есть несколько способов нахождения углов многоугольников. Чаще всего их вычисляют в градусах. Но можно выразить их и в радианах. Как это сделать? Необходимо действовать следующим образом. Сначала выясняем число сторон правильного многоугольника, затем вычитаем из него 2. Значит, мы получаем значение: n - 2. Умножьте найденную разность на число п («пи» = 3,14). Теперь остается только разделить полученное произведение на число углов в n-угольнике. Рассмотрим данные вычисления на примере все того же пятнадцатиугольника. Итак, число n равно 15. Применим формулу S = п(n - 2) : n = 3,14(15 - 2) : 15 = 3,14 ∙ 13: 15 = 2,72. Это, конечно же, не единственный способ рассчитать угол в радианах. Можно просто разделить размер угла в градусах на число 57,3. Ведь именно столько градусов эквивалентно одному радиану.

Расчет значения углов в градах

Помимо градусов и радиан, значение углов правильного многоугольника можно попробовать найти в градах. Делается это следующим образом. Из общего количества углов вычитаем 2, делим полученную разность на число сторон правильного многоугольника. Найденный результат умножаем на 200. К слову сказать, такая единица измерения углов, как грады, практически не используется.

Расчет внешних углов n-угольников

У любого правильного многоугольника, кроме внутреннего, можно вычислить еще и внешний угол. Его значение находят так же, как и для остальных фигур. Итак, чтобы найти внешний угол правильного многоугольника, необходимо знать значение внутреннего. Далее, нам известно, что сумма этих двух углов всегда равна 180 градусам. Поэтому вычисления делаем следующим образом: 180⁰ минус значение внутреннего угла. Находим разность. Она и будет равняться значению смежного с ним угла. Например, внутренний угол квадрата равен 90 градусов, значит, внешний будет составлять 180⁰ - 90⁰ = 90⁰. Как мы видим, найти его несложно. Внешний угол может принимать значение от +180⁰ до, соответственно, -180⁰.

Тема: «Многоугольники.Виды многоугольников»

9 класс

ШЛ №20

Учитель: Харитонович Т.И. Цель урока: исследование видов многоугольников.

Обучающая задача: актуализировать, расширить и обобщить знания учащихся о многоугольниках; сформировать представление о “составных частях” многоугольника; провести исследование количества составных элементов правильных многоугольников (от треугольника до n – угольника);

Развивающая задача: развивать умения анализировать, сравнивать, делать выводы, развивать вычислительные навыки, устную и письменную математическую речь, память, а также самостоятельность в мышлении и учебной деятельности, умение работать в парах и группах; развивать исследовательскую и познавательную деятельность;

Воспитательная задача: воспитывать самостоятельность, активность, ответственность за порученное дело, упорство в достижении поставленной цели.

Оборудование: интерактивная доска (презентация)

Ход урока

Показ презентации: «Многоугольники»

“Природа говорит языком математики, буквы этого языка … математические фигуры”. Г.Галлилей

В начале урока класс делится на рабочие группы (в нашем случае деление на3 группы)

1.Стадия вызова-

а) актуализация знаний учащихся по теме;

б) пробуждение интереса к изучаемой теме, мотивация каждого ученика к учебной деятельности.

Прием: Игра “Верите ли вы в то, что…”, организация работы с текстом.

Формы работы: фронтальная, групповая.

“Верите ли вы в то, что ….”

1. … слово “многоугольник” указывает на то, что у всех фигур этого семейства “много углов”?

2. … треугольник относится к большому семейству многоугольников, выделяемых среди ножества различных геометрических фигур на плоскости?

3. … квадрат – это правильный восьмиугольник (четыре стороны + четыре угла)?

Сегодня на уроке речь пойдет о многоугольниках. Мы узнаем, что эта фигура ограничена замкнутой ломаной, которая в свою очередь бывает простой, замкнутой. Поговорим о том, что многоугольники бывают плоскими, правильными, выпуклыми. Один из плоских многоугольников – треугольник, с которым вы давно и хорошо знакомы (можно продемонстрировать учащимся плакаты с изображением многоугольников, ломаной, показать их различные виды, также можно воспользоваться и ТСО).

2. Стадия осмысления

Цель: получение новой информации, ее осмысление, отбор.

Прием: зигзаг.

Формы работы: индивидуальная->парная->групповая.

Каждому из группы выдается текст по теме урока, причем текст составлен таким образом, что он включает в себя как информацию уже известную учащимся, так и информацию абсолютно новую. Вместе с текстом учащиеся получают вопросы, ответы на которые необходимо в этом тексте найти.

Многоугольники. Виды многоугольников.

Кто не слышал о загадочном Бермудском треугольнике, в котором бесследно исчезают корабли и самолеты? А ведь знакомый нам с детства треугольник таит в себе немало интересного и загадочного.

Помимо уже известных нам видов треугольников, разделяемых по сторонам (разносторонний, равнобедренный, равносторонний) и углам (остроугольный, тупоугольный, прямоугольный) треугольник относится к большому семейству многоугольников, выделяемых среди множества различных геометрических фигур на плоскости.

Слово “многоугольник” указывает на то, что у всех фигур этого семейства “много углов”. Но для характеристики фигуры этого не достаточно.

Ломаной А1А2…Аn называется фигура, которая состоит из точек А1,А2,…Аn и соединяющих их отрезков А1А2, А2А3,…. Точки называются вершинами ломаной, а отрезки звеньями ломаной. (РИС.1)

Ломаная называется простой, если она не имеет самопересечений (рис.2,3).

Ломаная называется замкнутой, если у нее концы совпадают. Длиной ломаной называется сумма длин ее звеньев (рис.4)

Простая замкнутая ломаная называется многоугольником, если ее соседние звенья не лежат на одной прямой (рис.5).

Подставьте в слове “многоугольник” вместо части “много” конкретное число, например 3. Вы получите треугольник. Или 5. Тогда - пятиугольник. Заметим, что, сколько углов, столько и сторон, поэтому эти фигуры вполне можно было бы назвать и многосторонниками.

Вершины ломаной называются вершинами многоугольника, а звенья ломаной – сторонами многоугольника.

Многоугольник разбивает плоскость на две области: внутреннюю и внешнюю (рис.6).

Плоским многоугольником или многоугольной областью называется конечная часть плоскости, ограниченная многоугольником.

Две вершины многоугольника являющиеся концами одной стороны называются соседними. Вершины, не являющиеся концами одной стороны – несоседние.

Многоугольник с n вершинами, а значит, и с n сторонами называется n-угольником.

Хотя наименьшее число сторон многоугольника – 3. Но треугольники, соединяясь, друг с другом, могут образовывать другие фигуры, которые в свою очередь также являются многоугольниками.

Отрезки, соединяющие не соседние вершины многоугольника, называются диагоналями.

Многоугольник называется выпуклым, если он лежит в одной полуплоскости относительно любой прямой, содержащей его сторону. При этом сама прямая считается принадлежащей ПОЛУПЛОСКОСТИ

Углом выпуклого многоугольника при данной вершине называется угол, образованный его сторонами, сходящимися в этой вершине.

Докажем теорему (о сумме углов выпуклого n – угольника): Сумма углов выпуклого n – угольника равна 1800*(n - 2).

Доказательство. В случае n=3 теорема справедлива. Пусть А1А2…А n – данный выпуклый многоугольник и n>3. Проведем в нем (из одной вершины) диагонали. Так как многоугольник выпуклый, то эти диагонали разбивают его на n – 2 треугольника. Сумма углов многоугольника совпадает с суммой углов всех этих треугольников. Сумма углов каждого треугольника равна 1800, а число этих треугольников n – 2. Поэтому сумма углов выпуклого n – угольника А1А2…А n равна 1800* (n - 2). Теорема доказана.

Внешним углом выпуклого многоугольника при данной вершине называется угол, смежный внутреннему углу многоугольника при этой вершине.

Выпуклый многоугольник называется правильным, если у него все стороны равны и все углы равны.

Так что квадрат можно назвать по-другому – правильным четырехугольником. Равносторонние треугольники также являются правильными. Такие фигуры давно интересовали мастеров, украшавших здания. Из них получались красивые узоры, например на паркете. Но не из всех правильных многоугольников можно было сложить паркет. Из правильных восьмиугольников паркет сложить нельзя. Дело в том, что у них каждый угол равен 1350.И если какая – нибудь точка является вершиной двух таких восьмиугольников, то на их долю придется 2700 , и третьему восьмиугольнику там поместиться негде: 3600 - 2700 =900 .Но для квадрата этого достаточно. Поэтому можно сложить паркет из правильных восьмиугольников и квадратов.

Правильными бывают и звезды. Наша пятиконечная звезда – правильная пятиугольная звезда. А если повернуть квадрат вокруг центра на 450 , то получится правильная восьмиугольная звезда.

Что называется ломаной? Объясните, что такое вершины и звенья ломаной.

Какая ломаная называется простой?

Какая ломаная называется замкнутой?

Что называется многоугольником? Что называется вершинами многоугольника? Что называется сторонами многоугольника?

Какой многоугольник называется плоским? Приведите примеры многоугольников.

Что такое n – угольник?

Объясните, какие вершины многоугольника – соседние, а какие нет.

Что такое диагональ многоугольника?

Какой многоугольник называется выпуклым?

Объясните, какие углы многоугольника внешние, а какие внутренние?

Какой многоугольник называется правильным? Приведите примеры правильных многоугольников.

Чему равна сумма углов выпуклого n-угольника? Докажите.

Учащиеся работают с текстом, ищут ответы на поставленные вопросы, после чего формируются экспертные группы, работа в которых идет по одним и тем же вопросам: учащиеся выделяют главное, составляют опорный конспект, представляют информацию одной из графических форм. По окончании работы учащиеся возвращаются в свои рабочие группы.

3.Стадия рефлексии-

а) оценка своих знаний, вызов к следующему шагу познания;

б) осмысление и присвоение полученной информации.

Прием: исследовательская работа.

Формы работы: индивидуальная->парная->групповая.

В рабочих группах оказываются специалисты по ответам на каждый из разделов предложенных вопросов.

Вернувшись в рабочую группу, эксперт знакомит других членов группы с ответами на свои вопросы. В группе происходит обмен информацией всех участников рабочей группы. Таким образом, в каждой рабочей группе, благодаря работе экспертов, складывается общее представление по изучаемой теме.

Исследовательская работа учащихся – заполнение таблицы.

Правильные многоугольники Чертеж Кол-во сторон Кол-во вершин Сумма всех внутр.углов Градусная мера внутр. угла Градусная мера внешн.угла Количество диагоналей

А)треугольник

Б) четырехугольник

В)пятиуГольник

Г) шестиугольник

Д) n-угольник

Решение интересных задач по теме урока.

1)Сколько сторон имеет правильный многоугольник, каждый из внутренних углов которого равен 1350?

2)В некотором многоугольнике все внутренние углы равны между собой. Может ли сумма внутренних углов этого многоугольника равняться: 3600, 3800?

3)Можно ли построить пятиугольник с углами 100,103,110,110,116 градусов?

Подведение итогов урока.

Запись домашнего задания: СТР66-72 №15,17 И ЗАДАЧА:в ЧЕТЫРЕХУГОЛЬНИКЕ, ПРОВЕДИТЕ ПРЯМУЮ ТАК, ЧТОБЫ ОНА РАЗДЕЛИЛА ЕГО НА ТРИ ТРЕУГОЛЬНИКА.

Рефлексия в виде тестов (на интерактивной доске)

На этом уроке мы приступим уже к новой теме и введем новое для нас понятие «многоугольник». Мы рассмотрим основные понятия, связанные с многоугольниками: стороны, вершины углы, выпуклость и невыпуклость. Затем докажем важнейшие факты, такие как теорема о сумме внутренних углов многоугольника, теорема о сумме внешних углов многоугольника. В итоге, мы вплотную подойдем к изучению частных случаев многоугольников, которые будут рассматриваться на дальнейших уроках.

Тема: Четырехугольники

Урок: Многоугольники

В курсе геометрии мы изучаем свойства геометрических фигур и уже рассмотрели простейшие из них: треугольники и окружности. При этом мы обсуждали и конкретные частные случаи этих фигур, такие как прямоугольные, равнобедренные и правильные треугольники. Теперь пришло время поговорить о более общих и сложных фигурах - многоугольниках .

С частным случаем многоугольников мы уже знакомы - это треугольник (см. Рис. 1).

Рис. 1. Треугольник

В самом названии уже подчеркивается, что это фигура, у которой три угла. Следовательно, в многоугольнике их может быть много, т.е. больше, чем три. Например, изобразим пятиугольник (см. Рис. 2), т.е. фигуру с пятью углами.

Рис. 2. Пятиугольник. Выпуклый многоугольник

Определение. Многоугольник - фигура, состоящая из нескольких точек (больше двух) и соответствующего количества отрезков, которые их последовательно соединяют. Эти точки называются вершинами многоугольника, а отрезки - сторонами . При этом никакие две смежные стороны не лежат на одной прямой и никакие две несмежные стороны не пересекаются.

Определение. Правильный многоугольник - это выпуклый многоугольник, у которого все стороны и углы равны.

Любой многоугольник разделяет плоскость на две области: внутреннюю и внешнюю. Внутреннюю область также относят к многоугольнику .

Иными словами, например, когда говорят о пятиугольнике , имеют в виду и всю его внутреннюю область, и границу. А ко внутренней области относятся и все точки, которые лежат внутри многоугольника, т.е. точка тоже относится к пятиугольнику (см. Рис. 2).

Многоугольники еще иногда называют n-угольниками, чтобы подчеркнуть, что рассматривается общий случай наличия какого-то неизвестного количества углов (n штук).

Определение. Периметр многоугольника - сумма длин сторон многоугольника.

Теперь надо познакомиться с видами многоугольников. Они делятся на выпуклые и невыпуклые . Например, многоугольник, изображенный на Рис. 2, является выпуклым, а на Рис. 3 невыпуклым.

Рис. 3. Невыпуклый многоугольник

Определение 1. Многоугольник называется выпуклым , если при проведении прямой через любую из его сторон весь многоугольник лежит только по одну сторону от этой прямой. Невыпуклыми являются все остальные многоугольники .

Легко представить, что при продлении любой стороны пятиугольника на Рис. 2 он весь окажется по одну сторону от этой прямой, т.е. он выпуклый. А вот при проведении прямой через в четырехугольнике на Рис. 3 мы уже видим, что она разделяет его на две части, т.е. он невыпуклый.

Но существует и другое определение выпуклости многоугольника.

Определение 2. Многоугольник называется выпуклым , если при выборе любых двух его внутренних точек и при соединении их отрезком все точки отрезка являются также внутренними точками многоугольника.

Демонстрацию использования этого определения можно увидеть на примере построения отрезков на Рис. 2 и 3.

Определение. Диагональю многоугольника называется любой отрезок, соединяющий две не соседние его вершины.

Для описания свойств многоугольников существуют две важнейшие теоремы об их углах: теорема о сумме внутренних углов выпуклого многоугольника и теорема о сумме внешних углов выпуклого многоугольника . Рассмотрим их.

Теорема. О сумме внутренних углов выпуклого многоугольника (n -угольника).

Где - количество его углов (сторон).

Доказательство 1. Изобразим на Рис. 4 выпуклый n-угольник.

Рис. 4. Выпуклый n-угольник

Из вершины проведем все возможные диагонали. Они делят n-угольник на треугольника, т.к. каждая из сторон многоугольника образует треугольник, кроме сторон, прилежащих к вершине . Легко видеть по рисунку, что сумма углов всех этих треугольников как раз будет равна сумме внутренних углов n-угольника. Поскольку сумма углов любого треугольника - , то сумма внутренних углов n-угольника:

Что и требовалось доказать.

Доказательство 2. Возможно и другое доказательство этой теоремы. Изобразим аналогичный n-угольник на Рис. 5 и соединим любую его внутреннюю точку со всеми вершинами.

Рис. 5.

Мы получили разбиение n-угольника на n треугольников (сколько сторон, столько и треугольников). Сумма всех их углов равна сумме внутренних углов многоугольника и сумме углов при внутренней точке, а это угол . Имеем:

Что и требовалось доказать.

Доказано.

По доказанной теореме видно, что сумма углов n-угольника зависит от количества его сторон (от n). Например, в треугольнике , а сумма углов . В четырехугольнике , а сумма углов - и т.д.

Теорема. О сумме внешних углов выпуклого многоугольника (n -угольника).

Где - количество его углов (сторон), а , …, - внешние углы.

Доказательство. Изобразим выпуклый n-угольник на Рис. 6 и обозначим его внутренние и внешние углы.

Рис. 6. Выпуклый n-угольник с обозначенными внешними углами

Т.к. внешний угол связан со внутренним как смежные, то и аналогично для остальных внешних углов. Тогда:

В ходе преобразований мы воспользовались уже доказанной теоремой о сумме внутренних углов n-угольника .

Доказано.

Из доказанной теоремы следует интересный факт, что сумма внешних углов выпуклого n-угольника равна от количества его углов (сторон). Кстати, в отличие от суммы внутренних углов.

Список литературы

  1. Александров А.Д. и др. Геометрия, 8 класс. - М.: Просвещение, 2006.
  2. Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. - М.: Просвещение, 2011.
  3. Мерзляк А.Г., Полонский В.Б., Якир С.М. Геометрия, 8 класс. - М.: ВЕНТАНА-ГРАФ, 2009.
  1. Profmeter.com.ua ().
  2. Narod.ru ().
  3. Xvatit.com ().

Домашнее задание