» »

Признаки щелочных металлов. Соединения щелочных металлов и их применение

12.10.2019


ПОДГРУППА IА. ЩЕЛОЧНЫЕ МЕТАЛЛЫ
ЛИТИЙ, НАТРИЙ, КАЛИЙ, РУБИДИЙ, ЦЕЗИЙ, ФРАНЦИЙ

Электронное строение щелочных металлов характеризуется наличием на внешней электронной оболочке одного электрона, относительно слабо связанного с ядром. С каждого щелочного металла начинается новый период в периодической таблице. Щелочной металл способен отдавать свой внешний электрон легче, чем любой другой элемент этого периода. Разрез щелочного металла в инертной среде имеет яркий серебристый блеск. Щелочные металлы отличаются невысокой плотностью, хорошей электропроводностью и плавятся при сравнительно низких температурах (табл. 2).
Благодаря высокой активности щелочные металлы в чистом виде не существуют, а встречаются в природе только в виде соединений (исключая франций), например с кислородом (глины и силикаты) или с галогенами (хлорид натрия). Хлориды являются сырьем для получения щелочных металлов в свободном состоянии. Морская вода содержит ЩЕЛОЧНЫЕ МЕТАЛЛЫ3% NaCl и следовые количества других солей. Очевидно, что озера и внутренние моря, а также подземные отложения солей и рассолы содержат галогениды щелочных металлов в больших концентрациях, чем морская вода. Например, содержание солей в водах Большого Соленого озера (шт. Юта, США) составляет 13,827,7%, а в Мертвом море (Израиль) до 31% в зависимости от площади зеркала воды, изменяющейся от времени года. Можно полагать, что незначительное содержание KCl в морской воде по сравнению с NaCl объясняется усвоением иона K+ морскими растениями.
В свободном виде щелочные металлы получают электролизом расплавов таких солей, как NaCl, CaCl2, CaF2 или гидроксидов (NaOH), так как нет более активного металла, способного вытеснить щелочной металл из галогенида. При электролизе галогенидов необходимо изолировать выделяющийся на катоде металл, так как одновременно на аноде выделяется газообразный галоген, активно реагирующий с выделяющимся металлом.
См. также ЩЕЛОЧЕЙ ПРОИЗВОДСТВО
Поскольку у щелочных металлов на внешнем слое всего один электрон, каждый из них является наиболее активным в своем периоде, так, Li самый активный металл в первом периоде из восьми элементов, Na соответственно во втором, а K самый активный металл третьего периода, содержащего 18 элементов (первый переходный период). В подгруппе щелочных металлов (IA) способность отдавать электрон возрастает сверху вниз.
Химические свойства. Все щелочные металлы активно реагируют с кислородом, образуя оксиды или пероксиды, отличаясь в этом друг от друга: Li превращается в Li2O, а другие щелочные металлы в смесь M2O2 и MO2, причем Rb и Cs при этом возгораются. Все щелочные металлы образуют с водородом солеподобные термически стабильные при высоких температурах гидриды состава M+H, являющиеся активными восстановителями; гидриды разлагаются водой с образованием щелочей и водорода и выделением теплоты, вызывающей воспламенение газа, причем скорость этой реакции у лития выше, чем у Na и K.
См. также ВОДОРОД; КИСЛОРОД.
В жидком аммиаке щелочные металлы растворяются, образуя голубые растворы, и (в отличие от реакции с водой) могут быть выделены снова при испарении аммиака или добавлении соответствующей соли (например, NaCl из его аммиачного раствора). При реакции с газообразным аммиаком реакция протекает подобно реакции с водой:

Амиды щелочных металлов проявляют основные свойства подобно гидроксидам. Большинство соединений щелочных металлов, кроме некоторых соединений лития, хорошо растворимы в воде. По атомным размерам и зарядовой плотности литий близок к магнию, поэтому свойства соединений этих элементов похожи. По растворимости и термической устойчивости карбонат лития подобен карбонатам магния и бериллия элементов подгруппы IIA; эти карбонаты разлагаются при относительно невысоких температурах вследствие более прочной связи МО. Соли лития лучше растворимы в органических растворителях (спиртах, эфирах, нефтяных растворителях), чем соли других щелочных металлов. Литий (как и магний) непосредственно реагирует с азотом, образуя Li3N (магний образует Mg3N2), тогда как натрий и другие щелочные металлы могут образовывать нитриды только в жестких условиях. Металлы подгруппы IA реагируют с углеродом, но наиболее легко протекает взаимодействие с литием (очевидно, благодаря его малому радиусу) и наименее легко с цезием. И наоборот, активные щелочные металлы непосредственно реагируют с СО, образуя карбонилы (например, K(CO)x), а менее активные Li и Na только в определенных условиях.
Применение. Щелочные металлы применяются как в промышленности, так и в химических лабораториях, например для синтезов. Литий используется для получения твердых легких сплавов, отличающихся, однако, хрупкостью. Большие количества натрия расходуются для получения сплава Na4Pb, из которого получают тетраэтилсвинец Pb(C2H5)4 антидетонатор бензинового топлива. Литий, натрий и кальций используются как компоненты мягких подшипниковых сплавов. Единственный и поэтому подвижный электрон на внешнем слое делает щелочные металлы прекрасными проводниками тепла и электричества. Сплавы калия и натрия, сохраняющие жидкое состояние в широком интервале температур, применяют как теплообменную жидкость в некоторых типах ядерных реакторов и благодаря высоким температурам в ядерном реакторе используются для производства пара. Металлический натрий в виде подводящих электрических шин используется в электрохимической технологии для передачи токов большой мощности. Гидрид лития LiH является удобным источником водорода, выделяющегося в результате реакции гидрида с водой. Литийалюминийгидрид LiAlH4 и гидрид лития используются в качестве восстановителей в органическом и неорганическом синтезе. Благодаря малому ионному радиусу и соответственно высокой зарядовой плотности литий активен в реакциях с водой, поэтому соединения лития сильно гигроскопичны, и хлорид лития LiCl используется для осушки воздуха при эксплуатации приборов. Гидроксиды щелочных металлов сильные основания, хорошо растворимые в воде; они применяются для создания щелочной среды. Гидроксид натрия как наиболее дешевая щелочь находит широкое применение (только в США ее расходуется в год более 2,26 млн. т).
Литий. Самый легкий металл, имеет два стабильных изотопа с атомной массой 6 и 7; более распространен тяжелый изотоп, его содержание составляет 92,6% от всех атомов лития. Литий был открыт А.Арфведсоном в 1817 и выделен Р.Бунзеном и А.Матисеном в 1855. Он используется в производстве термоядерного оружия (водородная бомба), для увеличения твердости сплавов и в фармацевтике. Соли лития применяют для увеличения твердости и химической стойкости стекла, в технологии щелочных аккумуляторных батарей, для связывания кислорода при сварке.
Натрий. Известен с древности, выделил его Х.Дэви в 1807. Это мягкий металл, широко применяются такие его соединения, как щелочь (гидроксид натрия NaOH), пищевая сода (бикарбонат натрия NaHCO3) и кальцинированная сода (карбонат натрия Na2CO3). Находит применение и металл в виде паров в неярких газоразрядных лампах уличного освещения.
Калий. Известен с древности, выделил его также Х.Дэви в 1807. Соли калия хорошо известны: калиевая селитра (нитрат калия KNO3), поташ (карбонат калия K2CO3), едкое кали (гидроксид калия KOH) и др. Металлический калий также находит различное применение в технологии теплообменных сплавов.
Рубидий был открыт методом спектроскопии Р.Бунзеном в 1861; содержит 27,85% радиоактивного рубидия Rb-87. Рубидий, как и другие металлы подгруппы IA, химически высокоактивен и должен храниться под слоем нефти или керосина во избежание окисления кислородом воздуха. Рубидий находит разнообразное применение, в том числе в технологии фотоэлементов, радиовакуумных приборов и в фармацевтике.
Цезий. Соединения цезия широко распространены в природе, обычно в малых количествах совместно с соединениями других щелочных металлов. Минерал поллуцит силикат содержит 34% оксида цезия Cs2O. Элемент был открыт Р.Бунзеном методом спектроскопии в 1860. Основным применением цезия является производство фотоэлементов и электронных ламп, один из радиоактивных изотопов цезия Cs-137 применяется в лучевой терапии и научных исследованиях.
Франций. Последний член семейства щелочных металлов франций настолько радиоактивен, что его нет в земной коре в более чем следовых количествах. Сведения о франции и его соединениях основаны на исследовании ничтожного его количества, искусственно полученного (на высокоэнергетическом ускорителе) при a-распаде актиния-227. Наиболее долгоживущий изотоп 22387Fr распадается за 21 мин на 22388Ra и b-частицы. Согласно приблизительной оценке, металлический радиус франция составляет 2,7 . Франций обладает большинством свойств, характерных для других щелочных металлов, и отличается высокой электронодонорной активностью. Он образует растворимые соли и гидроксид. Во всех соединениях франций проявляет степень окисления I.

  • - : литий Li, натрийNa, калий К, рубидийRb, цезийCs, францийFr. Щ. м., кроме Cs, имеют серебристый металлич. блеск, Cs - золотисто-желтую окраску...

    Химическая энциклопедия

  • - хим. элементы I гр. периодич. системы Менделеева: литий, натрий, калий, рубидий, цезий, франций. Назв. связано со способностью образовывать сильные основания - щелочи, известные с древности...

    Большой энциклопедический политехнический словарь

  • - группа, включающая Li, Na, К, Rb, Cs, Fr. Смотри также: - Металлы - чистые металлы - ультрачистые металлы - тяжелые металлы - тугоплавкие металлы - редкие металлы - рассеянные металлы - радиоактивные металлы -...
  • - химические элементы Li, Na, К, Rb, Cs, Fr. Названы так потому, что их гидрооксиды - наиболее сильные щелочи. Химически щелочные металлы - наиболее активные металлы...

    Энциклопедический словарь по металлургии

  • - Alkali metals - .Металлы первой группы Периодической системы, а именно: литий, натрий, калий, рубидий, цезий и франций. Они образуют строго щелочные гидроксиды, отсюда и их название...

    Словарь металлургических терминов

  • - ПОДГРУППА IА. ЛИТИЙ, НАТРИЙ, КАЛИЙ, РУБИДИЙ, ЦЕЗИЙ, ФРАНЦИЙ Электронное строение щелочных металлов характеризуется наличием на внешней электронной оболочке одного электрона, относительно слабо связанного с ядром...

    Энциклопедия Кольера

  • - М. в., обладающие щелочной реакцией среды...

    Большой медицинский словарь

  • - геохим. фации, выделяемые по повышенным средним значениям рН в толще ила. Характерны для больших площадей дна морей и океанов, ряда озер и некоторых лагун; могут быть названы известковыми...

    Геологическая энциклопедия

  • - - магматические горн. породы, содержащие фельдшпатоиды и щелочные темноцветные силикаты - щелочные пироксены и щелочные амфиболы...

    Геологическая энциклопедия

  • - Семиреченской обл., Верненского у., в Алатауских горах, в 33 в. от ст. Тарган. Ущелье так глубоко, что дневной свет длится всего несколько часов. Источники обделаны и ими пользуются киргизы...
  • - или металлы щелочей и щелочных земель...

    Энциклопедический словарь Брокгауза и Евфрона

  • - магматические горные породы, относительно богатые щелочными металлами - натрием и калием...
  • - химические элементы гл. подгруппы I группы периодической системы элементов Д. И. Менделеева: Li, Na, К, Rb, Cs, Fr. Название получили от гидроокисей Щ. м., названных едкими щелочами...

    Большая Советская энциклопедия

  • - МЕТАЛЛЫ: литий Li, натрий Na, калий K, рубидий Rb, цезий Cs, франций Fr. Мягкие металлы, легко режутся, Rb, Cs и Fr почти пастообразны при обычных условиях...

    Современная энциклопедия

  • - ЩЕЛОЧНЫЕ горные породы - магматические горные породы с повышенным содержанием щелочных металлов. Главные породообразующие минералы: полевые шпаты, фельдшпатоиды, щелочные амфиболы, пироксен...
  • - химические элементы Li, Na, K, Rb, Cs, Fr. Название от щелочей - гидроксидов щелочных металлов...

    Большой энциклопедический словарь

"ЩЕЛОЧНЫЕ МЕТАЛЛЫ" в книгах

Металлы-братья

автора Терлецкий Ефим Давидович

Металлы-братья

Из книги Металлы, которые всегда с тобой автора Терлецкий Ефим Давидович

Металлы-братья Натрий и калий можно назвать если и не металлами-близнецами, то уж наверняка металлами-братьями. И тот и другой относятся к щелочным металлам, и тот и другой имеют нечётные номера, занимая соседние клетки в таблице Менделеева, правда, в разных периодах; и тот

Драгоценные металлы

Из книги Ремонт и реставрация мебели и предметов антиквариата автора Хорев Валерий Николаевич

Драгоценные металлы Итак, седая старина вкладывает нам в руки три общеизвестные категории металлов и сплавов: черные, цветные и благородные. Последние также относятся к цветным, но их справедливо выделяют в особую группу. Тут все понятно – ни золото, ни серебро, ни

Металлы

Из книги Аюрведа для начинающих. Древнейшая наука самоисцеления и долголетия автора Лад Васант

Металлы Кроме употребления лекарственных растений, Аюрведа использует целебные свойства металлов, драгоценностей и камней. Аюрведические учения говорят, что всё существующее в природе наделено энергией Вселенского Сознания.Все формы материи - просто внешнее

Металлы

Из книги Аюрведа и йога для женщин автора Варма Джульет

Металлы Все металлы без исключения обладают целительной силой. Главное – правильно эту силу использовать. Контактируя с кожей, они излучают электромагнитные волны. Эти волны оказывают воздействие не только на кожу, но и на все органы и ткани тела. Но надо быть

Перезаряжаемые щелочные батареи

Из книги Бывший горожанин в деревне. Лучшие рецепты для загородной жизни автора Кашкаров Андрей

Перезаряжаемые щелочные батареи Перезаряжаемые щелочные батареи (Rechargeable Alkaline – не путать с аккумуляторами, которые в старых публикациях до 1990 г. назывались «никель-кадмиевыми щелочными батареями») имеют высокое внутреннее сопротивление уже при комнатной температуре,

БСЭ

Щелочные металлы

Из книги Большая Советская Энциклопедия (ЩЕ) автора БСЭ

ПОЧЕМУ НАМ ВРЕДНЫ ЩЕЛОЧНЫЕ ВОДЫ

Из книги Как продлить быстротечную жизнь автора Друзьяк Николай Григорьевич

ПОЧЕМУ НАМ ВРЕДНЫ ЩЕЛОЧНЫЕ ВОДЫ В этой главе говорилось и об особой чувствительности дыхательного центра к гидрокарбонат-иону (НСОз-) - при введении в кровь бикарбоната натрия, который диссоциирует на ионы Ма+ и НСОз-возникает усиление дыхания. Последнее возникает,

ЩЕЛОЧНЫЕ МИНЕРАЛЫ

Из книги Шокирующая правда о воде и соли автора Брэгг Патриция

ЩЕЛОЧНЫЕ МИНЕРАЛЫ В человеческом организме имеются естественные ликвидаторы токсинов и ядов, собирающихся в продуктах отходов. Такие ликвидаторы являются настоящими оздоровителями нашего тела.Щелочные минералы, которые также очень важны для выполнения телом его

Металлы

Из книги Инки. Быт. Культура. Религия автора Боден Луи

Металлы Среди металлов, известных в доколумбовскую эпоху, можно назвать золото, серебро, медь, свинец, платину и олово. Железа индейцы не знали. В этом есть определенные сомнения, но последнее открытие подтвердило этот факт. Высокие чиновники из свиты Атауальпы незадолго

Металлы

Из книги Фильтры для очистки воды автора Хохрякова Елена Анатольевна

Металлы Железо общее Железо – один из самых распространенных элементов в природе. Его содержание в земной коре составляет около 4,7 % по массе, поэтому железо, с точки зрения его распространенности в природе, принято называть макроэлементом.В природной воде железо

Структура внешних электронных слоев в атомах элементов I группы позволяет прежде всего предполагать отсутствие у них тенденции к при­соединению электронов. С другой стороны, от­дача единственного внешнего электрона, каза­лось бы, должна происходить весьма легко и вести к образованию устойчивых одновалент­ных катионов рассматриваемых элементов.

Как показывает опыт, предположения эти в полной мере оправдываются только применительно к элементам левого столбца (Li , Na , К и аналогам). Для меди и ее аналогов они верны лишь, наполовину: в смысле отсутствия у них тенденции к присоединению электронов. Вместе с тем их наиболее удаленный от ядра 18-электронный слой оказывается еще не вполне закрепленным и при определённых условиях способен к частичной потере электронов. Последнее обусловливает возможность существования на ряду с одновалентными С u , Ag и А u также и соединений рассматриваемых элементов, отвечающих их более высокой валентности.

Подобное расхождение выведенных из атомных моделей предположений н результатов опыта показывает, что рассмотрение свойств элементов на основе только электронных структур атомов и без учета остальных особенностей не всегда достаточно для химической характеристики этих элементов даже в самых грубых чертах.

Щелочные металлы.

Применяемое к элементам ряда Li-Cs название щелочные металлы связано с тем, что их гидроокиси являются сильными щелочами. Натрий и калий относятся к наиболее распространенным элементам, составляя соответственно 2,0 и 1,1% от общего числа атомов земной коры. Содержание в ней лития (0,02%), рубидия (0,004%) и цезия (0,00009%) уже значительно меньше, а франция - ничтожно мало. Элементарные Na и К выделены только в 1807 г. Литий открыт в 1817 г., цезий и рубидий - соответственно в 1860 и 1861 г. Элемент № 87 - франций - был открыт в 1939 г., а название свое получил в 1946 г. Природные натрий и цезий являются «чистыми» элементами (23 Na и 133 Cs), литий слагается из изотопов 6 Li (7,4%) и 7 Li (92,6%), калий-из изотопов 39 К (93,22%).
40 К (0,01%) и 41 К (6,77%), рубидий- из изотопов 85 Rb (72,2%) и 87 Rb (27,8%). Из изотопов франция основное значение имеет встречающийся в природе 223 Fr (средняя продолжительность жизни атома 32 мин).

Распространённость:

В природе встречаются только соединения щелочных металлов. Натрий и калий являются постоянными составными частями многих сили­катов. Из отдельных минералов натрия важнейший - поваренная соль (NaCl) входит в состав морской воды и на отдельных участках земной поверхности образует под слоем наносных пород громадные залежи каменной соли. Верхние слои подобных залежей иногда содержат скопления солей калия в виде пластов сильвинита (mKCl∙nNaCl), ка рналлита (КСl MgCl 2 6Н 2 О) и др., служащие основным источником получения соединений этого элемента. Имеющих промышленное значение природных скоплений калийных солей известно лишь немного. Для лития известен ряд минералов, но скопления их редки. Рубидий и цезий встречаются почти исключительно в виде примесей к калию. Следы франция всегда содержатся в урановых рудах . Минералами лития являются, например, сподумен и лепидолит {Li 2 KAl }. Часть калия в последнем из них иногда бывает за­мещена на рубидий. То же относится к карналлиту, который может служить хорошим источником получения рубидия. Для технологии цезия наиболее важен сравнительно редкий минерал поллуцит - CsAI(SiO 3) 2 .

Получение:

В свободном состоянии щелочные металлы могут быть выделены электролизом их расплавленных хлористых солей. Основное практическое значение имеет натрий, ежегодная мировая выработка которого составляет более 200 тыс. т.Схема установки для его получения электролизом расплавленного NaCl показана ниже. Ванна состоит из стального кожуха с шамотной футеровкой, графитовым анодом (А) и кольцевым железным катодом (К), между которыми расположена сетчатая диафрагма. Электролитом обычно служит не чистый NaCl (т. пл. 800 ℃), а более легкоплавкая смесь из приблизительно 40% NaCl и 60% СаСl 2 , что дает возможность работать при температурах около 580 °С. Собирающийся в верхней части кольцевого катодного пространства и переходящий в сборник металлический натрий содержит небольшую (до 5%) примесь кальция, который затем почти полностью выделяется (растворимость Са в жидком натрии при температуре его плавления равна лишь 0,01%). По мере хода электролиза в ванну добавляют NaCl. Расход электроэнергии составляет около 15 кВт ч на 1 кг Na.

2NaCl→ 2Na+Cl 2

Это интересно:

До введения в практику электролитического метода металлический натрий получали накаливанием соды с углем по реакции:

Na 2 CO 3 +2C+244ккал→2Na+3CO

Выработка металлических К и Li несравненно меньше, чем натрия. Литий получают электролизом расплава LiCl + КСl, а калий-действием паров натрия на расплав КСl, поступающий противотоком к ним в специальных дистилляционных колоннах (из верхней части которых выходят пары калия). Рубидий и цезий в больших масштабах почти не добываются. Дли получении небольших количеств этих металлов удобно пользоваться нагреванием в вакууме их хлоридов с металлическим кальцием.

2LiCl→2Li+Cl 2

Физический свойства:

При отсутствии воздуха литий и его аналоги представляют собой серебристо-белые (за исключением желтоватого цезия) вещества с более или менее сильным металлическим блеском. Все щелочные металлы характеризуются небольшими плотностями, малой твердостью, низкими температурами плавления и кипения и хорошей электропроводностью. Их важнейшие константы сопоставлены ниже:

Плотность, г/см 3 .

Температура плавления, °С

Температура кипения, °С

Благодаря малой плотности Li, Na и К всплывают на воде (Li - даже на керосине). Щелочные металлы легко режутся ножом, а твердость наиболее мягкого из них - цезия - не превышает твердость воска. Несветящееся пламя газовой горелки щелочные металлы и их летучие соединения окрашивают в характерные цвета, из которых наиболее интенсивен присущий натрию ярко-желтый.

Это интересно:

Внешне проявляющееся в виде окрашивания пламени испускания нагретыми атомами щелочных металлов световых лучей обусловлено перескоком электронов с более высоких на более низкие энергетические уровни. Например, характерная желтая линия спектра натрия возникает при перескоке электрона с уровня 3р на уровень 3s. Очевидно, что для возможности такого перескока необходимо предварительное возбуждение атома, т. е. перевод одного или нескольких его электронов на более высокий энергетический уровень. В рассматриваемом случае возбуждение достигается за счет теплоты пламени (и требует затраты 48 ккал/г-атом), вообще же оно может последовать в результате сообщения атому энергии различных видов. Другие щелочные металлы вызывают появление следующих окрасок пламени: Li - карминово-красной, К-фиолетовый, Rb - синевато-красной, Cs - синей.

Спектр люминесценции ночного неба показывает постоянное наличие в ней желтого излучения натрия. Высота места его возникновения оценивается в 200-300 км.Т. е. атмосфера на этих высотах содержит атомы натрия (конечно, в ничтожных количествах). Возникновение излучения описывается рядом элементарных процессов (звездочкой показано возбужденное состояние; М -любая третья частица - О 2 , О 0 , N 2 и др.): Na + О 0 + М = NaO + М*, затем NaO + О=О 2 + Na* и, наконец, Na*= Na + λν.

Хранить натрий и калий следует в плотно закрытых сосудах под слоем сухого и нейтрального керосина. Недопустим их контакт с кислотами, водой, хлорированными органическими соединениями и твердой двуокисью углерода. Нельзя накапливать мелкие обрезки калия, которые окисляются особенно легко (из-за своей относительно большой поверхности). Неиспользованные остатки калия и натрия при малых количествах уничтожают взаимодействием с избытком спирта, при больших - сжи­ганием на углях костра. Загоревшиеся в помещении щелочные металлы лучше всего тушить, засыпая сухим порошком кальцинированной соды.

Химические свойства:

С химической стороны литий и его аналоги являются исключительно реакционноспособными металлами (причем активность их по направлению от Li к Cs обычно возрастает). Во всех соединениях щелочные металлы одновалентны. Располагаясь в крайней левой части ряда напряжений, они энергично взаимодействуют с водой по схеме:

2Э + 2H 2 O = 2ЭОН +H 2

При реакции с Li и Na выделение водорода не сопровождается его воспламенением, у К оно уже происходит, а у Rb и Cs взаимодействие протекает со взрывом.

· В соприкосновении с воздухом свежие разрезы Na и К (в меньшей степени и Li) тотчас покрываются рыхлой пленкой продуктов окисле­ния. Ввиду этого Na и К хранят обычно под керосином. Нагретые на воздухе Na и К легко загораются, а рубидий и цезий самовоспламе­няются уже при обычной температуре.

4Э+O 2 →2Э 2 O (для лития)

2Э+O 2 →Э 2 O 2 (для натрия)

Э+O 2 →ЭO 2 (для калия, рубидия и цезия)

Практическое применение находит главным образом перекись натрия (Na 2 0 2). Технически ее получают окислением при 350°С распыленного металлического натрия:

2Na+O 2 →Na 2 O 2 +122ккал

· Расплавы простых веществ способны соединяться с аммиаком, с образованием амидов и имидов, сольватов:

2Na расплав +2NH 3 →2NaNH 2 +H 2 (амид натрия)

2Na расплав +NH 3 →Na 2 NH+H 2 (имид натрия)

Na расплав +6NH 3 → (сольват натрия)

При взаимодействии пероксидов с водой происходит реакция:

2Э 2 O 2 +2H 2 O=4ЭOH+O 2

Взаимодействие Na 2 O 2 с водой сопровождается гидролизом:

Na 2 O 2 +2H 2 O→2NaOH + H 2 O 2 +34 ккал

Это интересно:

Взаимодействие Na 2 O 2 с двуокисью углерода по схеме

2Na 2 O 2 + 2CO 2 =2Na 2 CO 3 +O 2 +111 ккал

служит основой применения перекиси натрия как источника кислорода в изолирующих противогазах и на подводных лодках. Чистая или содержащая различные добавки (например, хлорной извести с примесью солей Ni или С u ) перекись натрия носит техническое название «оксилит». Смешанные препараты оксилита особенно удобны для получения кислорода, который выделяется ими под действием воды. Спрессованный в кубики оксилит может быть использован для получения равномерного тока кислорода в обычном аппарате для получения газов.

Na 2 O 2 +H 2 O=2NaOH+O 0 (выделяется атомарный кислород, вследствие распада перекиси водорода).

Надперекись калия (КО 2 ) нередко вводится в состав оксилита. Его взаимодействие с двуокисью углерода идет в этом случае по суммарномууравнению:

Na 2 O 2 + 2KO 2 + 2СO 2 = Na 2 CO 3 +K 2 CO 3 + 2O 2 + 100 ккал, т. е. двуокись углерода заменяется равным объемом кислорода.

· Способны образовывать озониды. Образование озонида калия-KO 3 идёт по уравнению:

4КОН+3O 3 = 4КO 3 + O 2 +2H 2 O

Он представляет собой красное кристаллическое вещество и является сильнейшим окислителем. При хранении KO 3 медленно распадается по уравнению 2NaO 3 →2NaO 2 +O 2 +11 ккал уже в обычных условиях. Водой он мгновенно разлагается по суммарной схеме 4 KO 3 +2 H 2 O=4 KOH +5 O 2

· Способны реагировать с водородом, с образованием ионных гидридов, по общей схеме:

Взаимодействие водорода с нагретыми щелочными металлами идет медленнее, чем с щелочноземельными. В случае Li требуется нагревание до 700-800 °С, тогда как его аналоги взаимодействуют уже при 350-400 °С. Гидриды щелочных металлов являются очень сильными восстановителями. Окисление их кислородом воздуха в сухом состоянии идет сравнительно медленно, но в присутствии влаги процесс настолько ускоряется, что может привести к самовоспла­менению гидрида. Особенно это относится к гидридам К, Rb и Cs. С водой происходит бурная реакция по схеме:

ЭН+ H 2 O= H 2 +ЭОН

ЭH+O 2 →2ЭOH

При взаимодействии NaH или КН с двуокисью углерода образуется соответствующая соль муравьиной кислоты:

NaH+CO 2 →HCOONa

Способны образовывать комплексы:

NaH+AlCl 3 →NaAlH 4 +3NaCl (алланат натрия)

NaAlH 4 → NaH+AlH 3

Нормальные оксиды щелочных металлов (за исключением Li 2 0) могут быть получены только косвенным путем . Они представляют собой твердые вещества следующих цветов:

Na 2 O+2HCl=2NaCl+H 2 O

Гидроокиси (ЭОН) щелочных металлов представляют собой бес­цветные, очень гигроскопичные вещества, разъедающие большинство соприкасающихся с ними материалов. Отсюда их иногда употребляемое в практике название - едкие щелочи. При действии щелочей кожа человеческого тела сильно разбухает и становится скользкой; при более продолжительном действии образуется очень болезненный глубокий ожог. Особенно опасны едкие щелочи для глаз (работать рекомен­дуется в защитных очках). Попавшую на руки или платье щелочь следует тотчас же смыть водой, затем смочить пораженное место очень разбавленным раствором какой- либо кислоты и вновь промыть водой.

Все они сравнительно легкоплавки и летучи без разложения (кроме отщепляющей воду LiOH).Для получения гидроксидовщелочных металловв основном используют электролитические методы. Наиболее крупнотоннажным является производство гидроксида натрияэлектролизомконцентрированного водного раствораповаренной соли:

2NaCl+2H 2 O→2NaOH+Cl 2 +H 2

Ø Являются типичными основаниями:

NaOH+HCl=NaCl+H 2 O

2NaOH+CO 2 =Na 2 CO 3 +H 2 O

2NaOH+2NO 2 =NaNO 3 +NaNO 2 +H 2 O

Ø Способны образовывать комплексы:

NaOH+ZnCl 2 = (ZnOH)Cl+NaCl

2Al+2NaOH+6H 2 O=2Na+3H 2

Al 2 O 3 + 6NaOH= 2Na 3 AlO 3 +3H 2 O

Al(OH) 3 +NaOH=Na

Ø Способны реагировать с неметаллами:

Cl 2 +2KOH=KCl+KClO+H 2 O(реакция идёт без нагреванием)

Cl 2 +6KOH=5KCl+KClO 3 +3H 2 O (реакция идёт с нагреванием)

3S+6NaOH=2Na 2 S+Na 2 SO 3 +3H 2 O

Ø Применяются в органическом синтезе (в частности гидроксид калия и натрия, в примерах указан гидроксид натрия):

NaOH+C 2 H 5 Cl=NaCl+C 2 H 4 (метод получения алкенов, этилена (этена) в данном случае), использовался спиртовой раствор гидроксида натрия.

NaOH+C 2 H 5 Cl=NaCl+C 2 H 5 OH (метод получения спиртов, этанола в данном случае), использовался водный раствор гидроксида натрия.

2NaOH+C 2 H 5 Cl=2NaCl+C 2 H 2 +H 2 O (метод получения алкинов, ацетилена (этина) в данном случае), использовался спиртовой раствор гидроксида натрия.

C 6 H 5 OH (фенол) +NaOH= C 6 H 5 ONa+H 2 O

NaOH(+CaO)+CH 3 COONa→Na 2 CO 3 CH 4 (один из способов получения метана)

Ø Надо знать разложение нескольких солей:

2KNO 3 →2KNO 2 +O 2

4KClO 3→ KCl+3KClO 4

2KClO 3→ KCl+3O 2

4Na 2 SO 3 →Na 2 S+3Na 2 SO 4

Примечательно то, что разложение нитратов идет примерно в диапазоне 450-600 ℃, далее они плавятся без разложения, но при достижении примерно 1000- 1500 ℃ идет разложение по схеме:

4LiNO 2 →2Li 2 O+4NO+O 2

Это интересно:

K 4 [ Fe (CN ) 6 ]+ FeCl 3 = KFe [ Fe (CN ) 6 ]+3 KCl (качественная реакция на Fe 3+)

3K 4 +4FeCl 3 =Fe 4 3 +12KCl

Na 2 O 2 +2 H 2 O=2NaOH+ H 2 O 2

4NaO 2 +2 H 2 O=4NaOH+ 3O 2

4NaO 3 +2 H 2 O=4NaOH+5O 2 ( реакцияозониданатриясводой )

2NaO 3→ 2NaO 2 +O 2 (Распад происходит при различных температурах, например: распад озонида натрия при -10 °C, озонида цезия при +100°C)

NaNH 2 +H 2 O→ NaOH+NH 3

Na 2 NH+2H 2 O→ 2NaOH+NH 3

Na 3 N+3H 2 O→3NaOH+NH 3

KNO 2 +2Al+KOH+5H 2 O→2K+NH 3

2NaI + Na 2 O 2 + 2H 2 SO 4 →I 2 ↓+ 2Na 2 SO 4 + 2H 2 O

Fe 3 O 4 +4NaH=4NaOH+3Fe

5NaN 3 +NaNO 3 →8N 2 +3Na 2 O

Применение:

Натрием широко пользуются при синтезах органических соединений и отчасти для получения некоторых его производных. В ядерной технике он используется как теплоноситель.

Литий имеет совершенно исключительное значение для термоядерной техники. В резиновой промышленности он используется при выработке искусственного каучука (как катализатор полимеризации), в металлургии - как ценная присадка к некоторым другим металлам и сплавам. Например, присадка лишь сотых долей процента лития сильно повышает твердость алюминия и его сплавов, а присадка 0,4% лития к свинцу почти в три раза повышает его твердость, не ухудшая сопротивления на изгиб. Имеются указания на то, что подобная же присадка цезия сильно улучшает механические свойства магния и предохраняет его от коррозии, однако такое его использование. Гидрид натрия используется иногда в металлургии для выделения редких металлов из их соединений. Его 2%-ный раствор в расплавленном NaOH находит применение для снятия окалины со стальных изделий (после минутного выдерживания в нем горячее изделие погружают в воду, причем восстановившаяся по уравнению

Fe 3 O 4 +4NaH = 4NaOH + 3Fe (окалина отпадает).

Принципиальная схема заводской установки для получения соды по амми­ачному методу (Сольвэ, 1863 г.) .

В печи (Л) идет обжиг известняка, причем образующаяся СO 2 поступает в карбонизационную башню (Б), а СаО гасится водой (В), после чего Ca(OH) 2 перекачивают в смеситель (Г), где она встречается с NH 4 Cl, при этом выделяется аммиак. Последний поступает в абсорбер (Д)и насыщает там крепкий раствор NaCl, который затем перекачивают в карбонизационную башню, где при взаимодействии с СО 2 образуются NaHCO 3 и NH 4 Cl. Первая соль почти полностью осаждается и задерживается на вакуум-фильтре (Е), а вторую вновь перека­чивают в смеситель (Г). Таким образом все время расходуются NaCl и известняк, а полу­чаются NaHCO 3 и CaCl 2 (последний - в виде отброса производства). Бикарбонат натрия пе­реводят затем нагреванием в соду.

Редактор: Харламова Галина Николаевна

К щелочным металлам относятся металлы IA группы Периодической системы Д.И. Менделеева – литий (Li), натрий (Na), калий (K), рубидий (Rb), цезий (Cs) и франций (Fr). На внешнем энергетическом уровне щелочных металлов находится один валентный электрон. Электронная конфигурация внешнего энергетического уровня щелочных металлов – ns 1 . В своих соединениях они проявляют единственную степень окисления равную +1. В ОВР являются восстановителями, т.е. отдают электрон.

Физические свойства щелочных металлов

Все щелочные металлы легкие (обладают небольшой плотностью), очень мягкие (за исключением Li легко режутся ножом и могут быть раскатаны в фольгу), имеют низкие температуры кипения и плавления (с ростом заряда ядра атома щелочного металла происходит понижение температуры плавления).

В свободном состоянии Li, Na, K и Rb – серебристо-белые металлы, Cs – металл золотисто-желтого цвета.

Щелочные металлы хранят в запаянных ампулах под слоем керосина или вазелинового масла, поскольку они обладают высокой химической активностью.

Щелочные металлы обладают высокой тепло- и электропроводностью, что обусловлено наличием металлической связи и объемоцентрированной кристаллической решетки

Получение щелочных металлов

Все щелочные металлы возможно получить электролизом расплава их солей, однако на практике таким способом получают только Li и Na, что связано с высокой химической активностью K, Rb, Cs:

2LiCl = 2Li + Cl 2

2NaCl = 2Na + Cl 2

Любой щелочной металл можно получить восстановлением соответствующего галогенида (хлорида или бромида), применяя в качестве восстановителей Ca, Mg или Si. Реакции проводят при нагревании (600 – 900С) и под вакуумом. Уравнение получения щелочных металлов таким способом в общем виде:

2MeCl + Ca = 2Mе + CaCl 2 ,

где Ме – металл.

Известен способ получения лития из его оксида. Реакцию проводят при нагревании до 300°С и под вакуумом:

2Li 2 O + Si + 2CaO = 4Li + Ca 2 SiO 4

Получение калия возможно по реакции между расплавленным гидроксидом калия и жидким натрием. Реакцию проводят при нагревании до 440°С:

KOH + Na = K + NaOH

Химические свойства щелочных металлов

Все щелочные металлы активно взаимодействуют с водой образуя гидроксиды. Из-за высокой химической активности щелочных металлов протекание реакции взаимодействия с водой может сопровождаться взрывом. Наиболее спокойно с водой реагирует литий. Уравнение реакции в общем виде:

2Me + H 2 O = 2MeOH + H 2

где Ме – металл.

Щелочные металлы взаимодействуют с кислородом воздуха образую ряд различных соединений – оксиды (Li), пероксиды (Na), надпероксиды (K, Rb, Cs):

4Li + O 2 = 2Li 2 O

2Na + O 2 =Na 2 O 2

Все щелочные металлы при нагревании реагируют с неметаллами (галогенами, азотом, серой, фосфором, водородом и др.). Например:

2Na + Cl 2 =2NaCl

6Li + N 2 = 2Li 3 N

2Li +2C = Li 2 C 2

2Na + H 2 = 2NaH

Щелочные металлы способны взаимодействовать со сложными веществами (растворы кислот, аммиак, соли). Так, при взаимодействии щелочных металлов с аммиаком происходит образование амидов:

2Li + 2NH 3 = 2LiNH 2 + H 2

Взаимодействие щелочных металлов с солями происходит по следующему принципу –вытесняют менее активные металлы (см. ряд активности металлов) из их солей:

3Na + AlCl 3 = 3NaCl + Al

Взаимодействие щелочных металлов с кислотами неоднозначно, поскольку при протекании таких реакций металл первоначально будет реагировать с водой раствора кислоты, а образующаяся в результате этого взаимодействия щелочь будет реагировать с кислотой.

Щелочные металлы реагируют с органическими веществами, такими, как спирты, фенолы, карбоновые кислоты:

2Na + 2C 2 H 5 OH = 2C 2 H 5 ONa + H 2

2K + 2C 6 H 5 OH = 2C 6 H 5 OK + H 2

2Na + 2CH 3 COOH = 2CH 3 COONa + H 2

Качественные реакции

Качественной реакцией на щелочные металлы является окрашивание пламени их катионами: Li + окрашивает пламя в красный цвет, Na + — в желтый, а K + , Rb + , Cs + — в фиолетовый.

Примеры решения задач

ПРИМЕР 1

Задание Осуществите химические превращения Na→Na 2 O→NaOH→Na 2 SO 4
Решение 4Na + O 2 →2Na 2 O

Щелочные металлы — группа неорганических веществ, простых элементов таблицы Менделеева. Все они обладают похожим атомным строением и соответственно, похожими свойствами. В группу входят калий, натрий, литий, цезий, рубидий, франций и теоретически описанный, но еще не синтезированный элемент унуне́нний. Первые пять веществ существуют в природе, франций — искусственно созданный, радиоактивный элемент. Свое название щелочные металлы получили из-за способности образовывать щелочи в реакции с водой.

Вся элементы группы химически активны, поэтому на Земле встречаются только в составе различных минералов, например, каменной, калийной, поваренной соли, буры, полевого шпата, морской воды, подземных рассолов, чилийской селитры . Франций часто сопутствует урановым рудам; рубидий и цезий — минералам с натрием и калием.

Свойства

Все представители группы — мягкие металлы, их можно резать ножом, сгибать руками. Внешне — блестящие, белого цвета (кроме цезия). Цезий отливает золотистым блеском. Легкие: натрий и калий легче воды, литий всплывает даже в керосине. Классические металлы с хорошей электро- и теплопроводностью. Горят, придают пламени характерный цвет, являющийся одним из аналитических способов определить тип металла. Легкоплавкие, самым «тугоплавким» является литий (+180,5 °С). Цезий тает прямо в руках при температуре +28,4 °С.

Активность в группе увеличивается по мере роста атомной массы: Li →Cs. Обладают восстановительными свойствами, в том числе в реакции с водородом. Проявляют валентность -1. Бурно реагируют с водой (все кроме лития — со взрывом); с кислотами, кислородом. Взаимодействуют с неметаллами, спиртами, водным аммиаком и его производными, карбоновыми кислотами, многими металлами.

Калий и натрий являются биогенными элементами, участвуют в водно-солевом и кислотно-щелочном балансе человеческого организма, необходимы для нормальной циркуляции крови и функционирования многих энзимов. Калий важен для растений.

В нашем организме есть и рубидий. Его нашли в крови, костях, головном мозге, легких. Он оказывает противовоспалительное, противоаллергическое действие, притормаживает реакции нервной системы, усиливает иммунитет, положительно влияет на состав крови.

Меры предосторожности

Щелочные металлы очень опасны, способны воспламеняться и взрываться просто от контакта с водой или воздухом. Многие реакции протекают бурно, поэтому работать с ними допускается только после тщательного инструктажа, с применением всех мер предосторожностей, в защитной маске и защитных очках.

Растворы калия, натрия и лития в воде являются сильными щелочами (гидроксиды калия , натрия, лития); контакт с кожей приводит к глубоким болезненным ожогам. Попадание щелочей, даже низкой концентрации, в глаза может привести к слепоте. Реакции с кислотами, аммиаком, спиртами проходят с выделением пожаро- и взрывоопасного водорода.

Щелочные металлы хранят под слоем керосина или вазелина в герметичных емкостях. Манипуляции с чистыми реактивами проводят в аргоновой атмосфере.

Следует тщательно следить за утилизацией остатков после опытов со щелочными металлами. Все остатки металлов предварительно должны быть нейтрализованы.

Применение

Щелочные металлы — общее название элементов 1-й группы периодической системы химических элементов. Ее состав: литий (Li), натрий (Na), калий (K), рубидий (Rb), цезий (Cs), франций (Fr), и гипотетический элемент — унуненний (Uue). Наименование группы произошло от названия растворимых гидроксидов натрия и калия, обладающих реакцией и вкусом щелочи. Рассмотрим общие черты строения атомов элементов, свойства, получение и применение простых веществ.

Устаревшая и новая нумерация группы

По устаревшей системе нумерации щелочные металлы, занимающие крайний слева вертикальный столбец таблицы Менделеева, относятся к I-А группе. В 1989 году в качестве основного Международный химический союз (IUPAC) предложил иной вариант (длиннопериодный). Щелочные металлы в соответствии с новой классификацией и сплошной нумерацией относятся к 1-й группе. Открывает эту совокупность представитель 2-го периода — литий, завершает ее радиоактивный элемент 7-го периода — франций. У всех металлов 1-й группы во внешней оболочке атомов содержится один s-электрон, который они легко отдают (восстанавливаются).

Строение атомов щелочных металлов

Для элементов 1-й группы характерно наличие второго энергетического уровня, повторяющего строение предшествующего инертного газа. У лития на предпоследнем слое — 2, у остальных — по 8 электронов. В химических реакциях атомы легко отдают внешний s-электрон, приобретая энергетически выгодную конфигурацию благородного газа. Элементы 1-й группы обладают малыми величинами энергии ионизации и электроотрицательности (ЭО). Они легко образуют однозарядные положительные ионы. При переходе от лития к францию возрастает количество протонов и электронов, радиус атома. Рубидий, цезий и франций легче отдают внешний электрон, чем предшествующие им в группе элементы. Следовательно, в группе сверху вниз увеличивается восстановительная способность.

Легкая окисляемость щелочных металлов приводит к тому, что элементы 1-й группы существуют в природе в виде соединений своих однозарядных катионов. Содержание в земной коре натрия — 2,0%, калия — 1,1%. Другие элементы в ней находятся в малых количествах, например, запасы франция — 340 г. Хлорид натрия растворен в морской воде, рапе соленых озер и лиманов, образует залежи каменной или поваренной соли. Вместе с галитом встречаются сильвинит NaCl . KCl и сильвин KCl. Полевой шпат образован алюмосиликатом калия K 2 . В воде ряда озер растворен карбонат натрия, а запасы сульфата элемента сосредоточены в акватории Каспийского моря (Кара-Богаз-Гол). Встречаются залежи нитрата натрия в Чили (чилийская селитра). Существует ограниченное число природных соединений лития. В качестве примесей к соединениям элементов 1-й группы встречаются рубидий и цезий, а франций находят в составе урановых руд.

Последовательность открытия щелочных металлов

Британский химик и физик Г. Дэви в 1807 году провел электролиз расплавов щелочей, впервые получив натрий и калий в свободном виде. В 1817 году шведский ученый Иоганн Арфведсон открыл элемент литий в минералах, а в 1825-м Г. Дэви выделил чистый металл. Рубидий был впервые обнаружен в 1861 году Р. Бунзеном и Г. Кирхгофом. Немецкие исследователи анализировали состав алюмосиликатов и получили в спектре красную линию, соответствующую новому элементу. В 1939 году сотрудница Парижского института радиоактивности Маргарита Пере установила существование изотопа франция. Она же дала название элементу в честь своей родины. Унуненний (эка-франций) — предварительное название нового вида атомов с порядковым номером 119. Временно используется химический символ Uue. Исследователи с 1985 года предпринимают попытки синтеза нового элемента, который станет первым в 8-м периоде, седьмым в 1-й группе.

Физические свойства щелочных металлов

Почти все щелочные металлы обладают серебристо-белым цветом и металлическим блеском на свежем срезе (цезий имеет золотисто-желтую окраску). На воздухе блеск тускнеет, появляется серая пленка, на литии — зеленовато-черная. Этот металл обладает наибольшей твердостью среди соседей по группе, но уступает тальку — самому мягкому минералу, открывающему шкалу Мооса. Натрий и калий легко сгибаются, их можно разрезать. Рубидий, цезий и франций в чистом виде представляют тестообразную массу. Плавление щелочных металлов происходит при относительно низкой температуре. Для лития она достигает 180,54 °С. Натрий плавится при температуре 97,86 °С, калий — при 63,51 °С, рубидий — при 39,32 °С, цезий — при 28,44 °С. Плотность щелочных металлов меньше, чем родственных им веществ. Литий плавает в керосине, поднимается на поверхность воды, калий и натрий также всплывают в нем.

Кристаллическое состояние

Кристаллизация щелочных металлов происходит в кубической сингонии (объемно-центрированной). Атомы в ее составе обладают зоной проводимости, на свободные уровни которой могут переходить электроны. Именно эти активные частицы осуществляет особую химическую связь — металлическую. Общность строения энергетических уровней и природа кристаллических решеток объясняют сходство элементов 1-й группы. При переходе от лития к цезию возрастают массы атомов элементов, что приводит к закономерному увеличению плотности, а также к изменению других свойств.

Химические свойства щелочных металлов

Единственный внешний электрон в атомах щелочных металлов слабо притягивается к ядру, поэтому им свойственна низкая энергия ионизации, отрицательное или близкое к нулю сродство к электрону. Элементы 1-й группы, обладая восстановительной активностью, практически не способны окислять. В группе сверху вниз возрастает активность в химических реакциях:

Получение и применение щелочных металлов

Металлы, относящиеся к 1-й группе, в промышленности получают электролизом расплавов их галогенидов и других природных соединений. При разложении под действием электрического тока положительные ионы на катоде присоединяют электроны и восстанавливаются до свободного металла. На противоположном электроде происходит окисление аниона.

При электролизе расплавов гидроксидов на аноде окисляются частицы OH - , выделяется кислород и получается вода. Еще один метод заключается в термическом восстановлении щелочных металлов из расплавов их солей кальцием. Простые вещества и соединения элементов 1-й группы имеют практическое значение. Литий служит сырьем в атомной энергетике, используется в ракетной технике. В металлургии применяется для удаления остатков водорода, азота, кислорода, серы. Гидроксидом дополняют электролит в щелочных аккумуляторах.

Натрий необходим для атомной энергетики, металлургии, органического синтеза. Цезий и рубидий используются при изготовлении фотоэлементов. Широкое применение находят гидроксиды и соли, особенно хлориды, нитраты, сульфаты, карбонаты щелочных металлов. Катионы обладают биологической активностью, особенно важны для организма человека ионы натрия и калия.