» »

А.И. Хейфец, Система электрохимической защиты трубопроводов тепловых сетей. Электрическая защита газопроводов

16.10.2019

МЕТАЛЛИЧЕСКИХ СООРУЖЕНИЙ»


Теоретические основы

Катодная защита подземных металлических сооружений

Принцип действия катодной защиты

При контакте металла с грунтами, относящимися к электролитическим средам, происходит коррозионный процесс, сопровождаемый образованием электрического тока, и устанавливается определенный электродный потенциал. Величину электродного потенциала трубопровода можно определить по разности потенциалов между двумя электродами: трубопроводом и неполяризующимся медно-сульфатным элементом. Таким образом, значение потенциала трубопровода представляет собой разность его электродного потенциала и потенциала электрода сравнения по отношению к грунту. На поверхности трубопровода протекают электродные процессы определенного направления и стационарные по характеру изменения во времени.

Стационарный потенциал принято называть естественным потенциалом, подразумевая при этом отсутствие на трубопроводе блуждающих и других наведенных токов.

Взаимодействие корродирующего металла с электролитом разделяется на два процесса: анодный и катодный, которые проходят одновременно на различных участках поверхности раздела металла и электролита.

При защите от коррозии используют территориальное разделение анодного и катодного процессов. К трубопроводу подключают источник тока с дополнительным электродом-заземлителем, с помощью которого накладывают на трубопровод внешний постоянный ток. В этом случае анодный процесс происходит на дополнительном электроде-заземлителе.

Катодная поляризация подземных трубопроводов осуществляется с помощью наложения электрического поля от внешнего источника постоянного тока. Отрицательный полюс источника постоянного тока подключается к защищаемой конструкции, при этом трубопровод является катодом по отношению к грунту, искусственно созданный анод-заземлитель - к положительному полюсу.

Принципиальная схема катодной защиты показана на рис. 14.1. При катодной защите отрицательный полюс источника тока 2 подключен к трубопроводу 1, а положительный - к искусственно созданному аноду-заземлителю 3. При включении источника тока от его полюса через анодное заземление поступает в грунт и через поврежденные участки изоляции 6 на трубу. Далее через точку дренажа 4 по соединительному проводу 5 ток возвращается снова к минусу источника питания. При этом на оголенных участках трубопровода начинается процесс катодной поляризации.



Рис. 14.1. Принципиальная схема катодной защиты трубопровода:

1 - трубопровод; 2 - внешний источник постоянного тока; 3 - анодное заземление;

4 - точка дренажа; 5 - дренажный кабель; 6 - контакт катодного вывода;

7 - катодный вывод; 8 - повреждения изоляции трубопровода

Поскольку напряжение внешнего тока, приложенного между электродом-заземлителем и трубопроводом, значительно превышает разность потенциалов между электродами коррозионных макропар трубопровода, стационарный потенциал анодного заземления не играет определяющей роли.

С включением электрохимической защиты (j 0a.доп ) нарушается распределение токов коррозионных макропар, сближаются значения разности потенциалов «труба – земля» катодных участков (j 0к ) с разностью потенциалов анодных участков (j 0а ), обеспечиваются условия для поляризации.

Катодная защита регулируется путем поддержания необходимого защитного потенциала. Если наложением внешнего тока трубопровод заполяризован до равновесного потенциала (j 0к = j 0а ) растворения металла (рис. 14.2 а), то анодный ток прекращается и коррозия приостанавливается. Дальнейшее повышение защитного тока нецелесообразно. При более положительных значениях потенциала наступает явление неполной защиты (рис. 14.2 б). Оно может возникнуть при катодной защите трубопровода, находящегося в зоне сильного влияния блуждающих токов или при использовании протекторов, не имеющих достаточно отрицательного электродного потенциала (цинковые протекторы).

Критериями защиты металла от коррозии являются защитная плотность тока и защитный потенциал.

Катодная поляризация неизолированной металлической конструкции до величины защитного потенциала требует значительных токов. Наиболее вероятные величины плотностей токов, необходимых для поляризации стали в различных средах до минимального защитного потенциала (-0,85 В) по отношению к медно-сульфатному электроду сравнения, приведены в табл. 14.1

Рис. 14.2. Коррозионная диаграмма для случая полной поляризации (а) и

неполной поляризации (б)

Обычно катодная защита используется совместно с изоляционными покрытиями, нанесенными на наружную поверхность трубопровода. Поверхностное покрытие уменьшает необходимый ток на несколько порядков. Так, для катодной защиты стали с хорошим покрытием в почве требуется всего 0,01 ... 0,2 мА/м 2 .

Таблица 14.1

Плотность тока, необходимая для катодной защиты

неизолированной стальной поверхности в различных средах

Защитная плотность тока для изолированных магистральных трубопроводов не может стать надежным критерием защиты вследствие неизвестного распределения поврежденной изоляции трубопровода, определяющую фактическую площадь контакта металла с грунтом. Даже для неизолированной трубы (патрон на подземном переходе через железные и шоссейные дороги) защитная плотность тока определяется по геометрическим размерам сооружения и является фиктивной, так как остается неизвестной доля поверхности патрона, покрытая постоянно присутствующими пассивными защитными слоями (окалиной и др.) и не участвующая в процессе деполяризации. Поэтому защитная плотность тока как критерий защиты применяется при некоторых лабораторных исследованиях, выполняемых на образцах металла.

При укладке в траншею изолированного трубопровода и его последующей засыпке изоляционное покрытие может быть повреждено, а в процессе эксплуатации трубопровода оно постепенно стареет (теряет свои диэлектрические свойства, водоустойчивость, адгезию). Поэтому при всех способах прокладки, кроме надземной, трубопроводы подлежат комплексной защите от коррозии защитными покрытиями и средствами электрохимической защиты (ЭХЗ) независимо от коррозионной активности грунта.

К средствам ЭХЗ относятся катодная, протекторная и электродренажная защиты.

Защита от почвенной коррозии осуществляется катодной поляризацией трубопроводов. Если катодная поляризация производится с помощью внешнего источника постоянного тока, то такая защита называется катодной, если же поляризация осуществляется присоединением защищаемого трубопровода к металлу, имеющему более отрицательный потенциал, то такая защита называется протекторной.

Катодная защита

Принципиальная схема катодной защиты показана на рисунке.

Источником постоянного тока является станция катодной защиты 3, где с помощью выпрямителей переменный ток от вдольтрассовой ЛЭП 1, поступающий через трансформаторный пункт 2, преобразуется в постоянный.

Отрицательным полюсом источник с помощью соединительного провода 4 подключен к защищаемому трубопроводу 6, а положительным — к анодному заземлению 5. При включении источника тока электрическая цепь замыкается через почвенный электролит.

Принципиальная схема катодной защиты

1 — ЛЭП; 2 — трансформаторный пункт; 3 — станция катодной защиты; 4 — соединительный провод; 5 — анодное заземление; 6 — трубопровод

Принцип действия катодной защиты следующий. Под воздействием приложенного электрического поля источника начинается движение полусвободных валентных электронов в направлении «анодное заземление — источник тока— защищаемое сооружение». Теряя электроны, атомы металла анодного заземления переходят в виде ион-атомов в раствор электролита, т.е. анодное заземление разрушается. Ион-атомы подвергаются гидратации и отводятся в глубь раствора. У защищаемого же сооружения вследствие работы источника постоянного тока наблюдается избыток свободных электронов, т.е. создаются условия для протекания реакций кислородной и водородной деполяризации, характерных для катода.

Подземные коммуникации нефтебаз защищают катодными установками с различными типами анодных заземлений. Необходимая сила защитного тока катодной установки определяется по формуле

J др =j 3 ·F 3 ·K 0

где j 3 — необходимая величина защитной плотности тока; F 3 — суммарная поверхность контакта подземных сооружений с грунтом; К 0 — коэффициент оголенности коммуникаций, величина которого определяется в зависимости от переходного сопротивления изоляционного покрытия R nep и удельного электросопротивления грунта р г по графику, приведенному на рисунке ниже.

Необходимая величина защитной плотности тока выбирается в зависимости от характеристики грунтов площадки нефтебазы в соответствии с таблицей ниже.

Протекторная защита

Принцип действия протекторной защиты аналогичен работе гальванического элемента.

Два электрода: трубопровод 1 и протектор 2, изготовленный из более электроотрицательного металла, чем сталь, опущены в почвенный электролит и соединены проводом 3. Так как материал протектора является более электроотрицательным, то под действием разности потенциалов происходит направленное движение электронов от протектора к трубопроводу по проводнику 3. Одновременно ион-атомы материала протектора переходят в раствор, что приводит к его разрушению. Сила тока при этом контролируется с помощью контрольно-измерительной колонки 4.

Зависимость коэффициентов оголенности подземных трубопроводов от переходного сопротивления изоляционного покрытия для грунтов удельным сопротивлением, Ом-м

1 — 100; 2 — 50; 3 — 30; 4 — 10; 5 — 5

Зависимость защитной плотности тока от характеристики грунтов

Принципиальная схема протекторной защиты

1 — трубопровод; 2 — протектор; 3 — соединительный провод; 4 — контрольно-измерительная колонка

Таким образом, разрушение металла все равно имеет место. Но не трубопровода, а протектора.

Теоретически для защиты стальных сооружений от коррозии могут быть использованы все металлы, расположенные в электрохимическом ряду напряжений левее железа, так как они более электроотрицательны. Практически же протекторы изготавливаются только из материалов, удовлетворяющих следующим требованиям:

  • разность потенциалов материала протектора и железа (стали) должна быть как можно больше;
  • ток, получаемый при электрохимическом растворении единицы массы протектора (токоотдача), должен быть максимальным;
  • отношение массы протектора, израсходованной на создание защитного тока, к общей потере массы протектора (коэффициент использования) должно быть наибольшим.

Данным требованиям в наибольшей степени удовлетворяют сплавы на основе магния, цинка и алюминия.

Протекторную защиту осуществляют сосредоточенными и протяженными протекторами. В первом случае удельное электросопротивление грунта должно быть не более 50 Ом-м, во втором — не более 500 Ом·м.

Электродренажная защита трубопроводов

Метод защиты трубопроводов от разрушения блуждающими токами, предусматривающий их отвод (дренаж) с защищаемого сооружения на сооружение — источник блуждающих токов либо специальное заземление, называется электродренажной защитой.

Применяют прямой, поляризованный и усиленный дренажи.

Принципиальные схемы электродренажной защиты

а — прямой дренаж; б —поляризованный дренаж; в — усиленный дренаж

Прямой электрический дренаж — это дренажное устройство двусторонней проводимости. Схема прямого электрического дренажа включает: реостат К, рубильник К, плавкий предохранитель Пр и сигнальное реле С. Сила тока в цепи «трубопровод — рельс* регулируется реостатом. Если величина тока превысит допустимую величину, то плавкий предохранитель сгорит, ток потечет по обмотке реле, при включении которого включается звуковой или световой сигнал.

Прямой электрический дренаж применяется в тех случаях, когда потенциал трубопровода постоянно выше потенциала рельсовой сети, куда отводятся блуждающие токи. В противном случае дренаж превратится в канал для натекания блуждающих токов на трубопровод.

Поляризованный электрический дренаж — это дренажное устройство, обладающее односторонней проводимостью. От прямого дренажа поляризованный отличается наличием элемента односторонней проводимости (вентильный элемент) ВЭ. При поляризованном дренаже ток протекает только от трубопровода к рельсу, что исключает натекание блуждающих токов на трубопровод по дренажному проводу.

Усиленный дренаж применяется в тех случаях, когда нужно не только отводить блуждающие токи с трубопровода, но и обеспечить на нем необходимую величину защитного потенциала. Усиленный дренаж представляет собой обычную катодную станцию, подключенную отрицательным полюсом к защищаемому сооружению, а положительным — не к анодному заземлению, а к рельсам электрифицированного транспорта.

За счет такой схемы подключения обеспечивается: вопервых, поляризованный дренаж (за счет работы вентильных элементов в схеме СКЗ), а во-вторых, катодная станция удерживает необходимый защитный потенциал трубопровода.

После ввода трубопровода в эксплуатацию производится регулировка параметров работы системы их защиты от коррозии. При необходимости с учетом фактического положения дел могут вводиться в эксплуатацию дополнительные станции катодной и дренажной защиты, а также протекторные установки.

Трубопроводные магистрали – это на сегодняшний день наиболее распространенное средство для осуществления транспортировки носителей энергии. Очевидный их недостаток – подверженность образованию ржавчины. Для этого выполняется катодная защита магистральных трубопроводов от коррозии. В чем же ее принцип действия?

Причины коррозии

Сети трубопроводов систем жизнеобеспечения распространены по всей территории России. С их помощью эффективно транспортируется газ, вода, нефтепродукты и нефть. Не так давно был проложен трубопроводов для транспортировки аммиака. Большинство видов трубопроводов выполнены из металла, а главный их враг – это коррозия, видов которой имеется много.

Причины образования ржавчины на металлических поверхностях основаны на свойствах окружающей среды, как наружной, так и внутренней коррозии трубопроводов. Опасность образования коррозии для внутренних поверхностей основана на:

  1. Взаимодействии с водой.
  2. Наличии в воде щелочей, солей или кислот.

Такие обстоятельства могут сложиться на магистральных водопроводах, системах горячего водоснабжения (ГВС), пара и отопления. Не менее важным фактором является способ прокладки трубопровода: наземный или подземный. Первый проще обслуживать и устранять причины образования ржавчины, по сравнению со вторым.

При способе прокладывания “труба в другую трубу” риск возникновения коррозии находится на невысоком уровне. При непосредственном выполнении монтажа трубопровода на открытом воздухе возможно образование ржавчины от взаимодействия с атмосферой, что тоже приводит к изменению конструкции.

Трубопроводы, расположенные под землей, в том числе пара и горячей воды наиболее уязвимы к коррозии. Возникает вопрос о подверженности к коррозии труб, расположенных на дне водоисточников, но лишь небольшая часть магистралей расположена в этих местах.

Согласно предназначению трубопроводы с риском возникновения коррозии подразделяются на:

  • магистральные;
  • промысловые;
  • для систем отопления и жизнеобеспечения населения;
  • для сточной воды от промышленных предприятий.

Подверженность коррозии магистральных трубопроводных сетей

Коррозия трубопроводов данного типа наиболее хорошо изучена, и их защита от воздействия внешних факторов определена стандартными требованиями. В нормативных документах рассматриваются способы защиты, а не причины, исходя из которых происходит образование ржавчины.

Не менее важно учитывать, что при этом рассматривается только наружная коррозия, которой подвержен внешний участок трубопровода, так как внутри магистрали проходят инертные газы. Не столь опасно в этом случае контактирование металла с атмосферой.

Для защищенности от коррозии по ГОСТ рассматриваются для нескольких участок трубопровода: повышенной и высокой опасности, а также коррозионно-опасных.

Воздействие негативных факторов из атмосферы для участков повышенной опасности или виды коррозии:

  1. От источников постоянного тока возникновение блуждающих токов.
  2. Воздействие микроорганизмов.
  3. Созданное напряжение провоцирует растрескивание металла.
  4. Хранение отходов.
  5. Соленые почвы.
  6. Температура транспортируемого вещества выше 300 °С.
  7. Углекислотная коррозия нефтепровода.

Монтер по защите подземных трубопроводов от коррозии должен знать конструкцию трубопровода и требования СНиП.

Электрохимическая коррозия от грунта

Вследствие разности напряжений, образовавшихся на отдельных участках трубопроводов, возникает поток электронов. Процесс образования ржавчины происходит по электрохимическому принципу. На основании этого эффекта часть металла в анодных зонах растрескивается и перетекает в основание почвы. После взаимодействия с электролитом образовывается коррозия.

Одним из значимых критериев для обеспечения защиты от негативных проявлений является длина магистрали. На пути попадаются почвы с разным составом и характеристикой. Все это способствует возникновению разности напряжений между частями проложенных трубопроводов. Магистрали обладают хорошей проводимостью, поэтому происходит образование гальванопар с достаточно большой протяженностью.

Увеличение скорости коррозии трубопровода провоцирует высокая плотность потока электронов. Не меньшее значение играет и глубина расположения магистралей, так как на ней сохраняется существенный процент влажности, и температуры, которая ниже отметки “0” не отпускается. На поверхности труб также остается прокатная окалина после обработки, а это влияет на появление ржавчины.

Путем проведения исследовательских работ установлена прямая зависимость между глубиной и площадью образованной ржавчины на металле. Это основано на том, что металл с большей площадью поверхности наиболее уязвим к внешним негативным проявлениям. К частным случаям можно отнести проявление на стальных сооружениях значительно меньших количеств разрушений под действием электрохимического процесса.

Агрессивность грунтов к металлу, прежде всего, определяется их собственной структурной составляющей, влажностью, сопротивлением, насыщенностью щелочами, воздушной проницаемостью и иными факторами. Монтер по защите подземных трубопроводов от коррозии должен быть ознакомлен с проектом на строительство магистрали.

Коррозия под влиянием блуждающих токов

Ржавчина может возникать от переменного и постоянного потока электронов:

  • Образование ржавчины под воздействием тока постоянных величин. Блуждающими токами называются токи, находящиеся в почве и в конструктивных элементах, расположенных под землей. Их происхождение антропогенное. Они возникают в результате эксплуатации технических устройств постоянного тока, распространяющегося от зданий или сооружений. Ими могут быть сварочные инверторы, систем защиты от катодов и иные устройства. Ток стремится пройти по пути наименьшего показателя сопротивления, в результате, при имеющихся в наличии трубопроводах в земле, току будет гораздо легче пройти через металл. Анодом является участок трубопровода, из которого блуждающий ток выходит на поверхность почвы. Часть трубопровода, в который попадает ток, играет роль катода. На описанных анодных поверхностях токи имеют повышенную плотность, поэтому именно в этих местах образовываются значительные коррозионные места. Скорость коррозии не ограничивается и может быть до 20 мм в год.
  • Образование ржавчины под воздействием переменного тока. При расположении около магистралей линий электропередач с напряжением сети свыше 110 кВ, а также параллельном расположении трубопроводов под влиянием переменных токов образовывается коррозия, в том числе коррозия под изоляцией трубопроводов.

Коррозионное растрескивание под влиянием напряжения

Если на металлическую поверхность одновременно воздействуют внешние негативные факторы и высокое напряжение от ЛЭП, создающее растягивающие усилия, то происходит образование ржавчины. Согласно проведенным исследованиям получила свое место водородно-коррозионная новая теория.

Трещины небольшого размера образовываются при насыщении трубы водородом, которое после обеспечивает увеличение давления изнутри до показателей, выше положенного эквивалента связи атомов и кристаллов.

Под влиянием диффузии протонов производится наводораживание поверхностного слоя под влияние гидролиза при повышенных уровнях катодной защищенности и одновременного воздействия неорганических соединений.

После того как трещина раскроется, происходит ускорение процесса ржавление металла, которое обеспечивается грунтовым электролитом. В итоге под влиянием механических воздействий металл подвергается медленному разрушению.

Коррозия под влиянием микроорганизмов

Микробиологической коррозией называется процесс образования ржавчины на трубопроводе под влиянием живых микроорганизмов. Это могут быть водоросли, грибки, бактерии, в их числе простейшие организмы. Установлено, что размножение бактерий наиболее существенно влияет на этот процесс. Для поддержания жизнедеятельности микроорганизмов необходимо создание условий, а именно нужен азот, влажность, воды и соли. Также условия такие, как:

  1. Температурно-влажностные показатели.
  2. Давление.
  3. Наличие освещенности.
  4. Кислород.

При выделении кислотной среды организмы также могут вызвать коррозию. Под их влиянием на поверхности проявляются каверны, имеющие черный цвет и неприятный запах сероводорода. Бактерии, содержащие сульфаты присутствуют практические во всех почвах, но скорость коррозии увеличивается при увеличении их количества.

Что такое электрохимическая защита

Электрохимическая защита трубопроводов от коррозии – это комплекс мер, направленных на недопущение развития коррозии под воздействием электрического поля. Для преобразования постоянного тока применяются специализированные выпрямители.

Защита от коррозии производится созданием электромагнитного поля, в результате чего приобретается отрицательный потенциал или участок исполняет роль катода. То есть отрезок стальных трубопроводов, огражденный от образования ржавчины, приобретает отрицательный заряд, а заземление – положительный.

Катодная защита трубопроводов от коррозии сопровождает электролитической защищенностью с достаточной проводимостью среды. Такую функцию выполняет грунт, при прокладывании металлических подземных магистралей. Контактирование электродов осуществляется через токопроводящие элементы.

Индикатор для определения показателей коррозии – это высоковольтный вольтметр или датчик коррозии. С помощью этого прибора контролируется показатель между электролитом и грунтом, конкретно для этого случая.

Как классифицируется электрохимическая защита

Коррозия и защита магистральных трубопроводов и резервуаров от нее контролируются двумя способами:

  • К металлической поверхности подводиться источник от тока. Этот участок приобретает отрицательный заряд, то есть исполняет роль катода. Аноды – это инертные электроды, которые никакого отношения к конструктивному исполнению не имеют. Этот способ считается наиболее распространенным, и электрохимическая коррозия не возникает. Такая методика направлена на недопущение следующих разновидностей коррозий: питтинговой, по причине присутствия блуждающих токов, кристаллического типа нержавеющей стали, а также растрескиванию элементов из латуни.
  • Гальванический способ. Защита магистральных трубопроводов или протекторная защита осуществляется металлическими пластинами с большими показателями отрицательных зарядов, изготовленными из алюминия, цинка, магния либо их сплавов. Аноды – это два элемента, так называемые ингибиторы, при этом медленное разрушение протектора способствует поддержанию в изделии катодного тока. Протекторная защита используется крайне редко. ЭХЗ выполняется на изоляционное покрытие трубопроводов.

Об особенностях электрохимической защиты

Основной причиной разрушения трубопроводов является следствие коррозии металлических поверхностей. После образования ржавчины образовывают трещины, разрывы, каверны, которые постепенно увеличиваются в размерах и способствуют разрыву трубопровода. Это явление чаще происходит у магистралей, проложенных под землей, или соприкасающихся с грунтовыми водами.

В принципе действия катодной защиты заложено создание разности напряжений и действия двумя вышеописанными методами. После проведенных измерительных операций непосредственно на местности расположения трубопровода выяснено, что нужный потенциал, способствующий замедлению процесса разрушения должен составлять 0,85В, а у подземных элементов это значение равно 0,55В.

Для замедления скорости коррозии следует снизить катодное напряжение на 0,3В. При таком раскладе, скорость коррозии не будет более 10 мкм/год, а это существенно продлить срок службы технических устройств.

Одна из значимых проблем – это наличие блуждающих токов в грунте. Такие токи возникают от заземлений зданий, сооружений, рельсовых путей и иных устройств. Тем более невозможно провести точную оценку, в каком месте они могут проявиться.

Для создания разрушающего воздействия достаточно заряда стальных трубопроводов положительным потенциалом по отношению к электролитическому окружению, к ним относятся магистрали, проложенные в грунте.

Для того чтобы обеспечить контур током необходимо подвести внешнее напряжение, параметры которого будут достаточными для пробивания сопротивления грунтового основания.

Как правило, подобные источники – это линии электропередач с показателями мощностей от 6 до 10 кВт. Если электрический ток невозможно подвести, то можно использовать дизельные или газовые генераторы. Монтер по защите подземных трубопроводов от коррозии перед выполнением работ должен быть ознакомлен с проектными решениями.

Катодная защита

Чтобы снизился процент возникновения ржавчины на поверхности труб, используются станции электродной защиты:

  1. Анодная, выполненная в виде заземляющих проводников.
  2. Преобразователи постоянных потоков электронов.
  3. Оборудование пункта управления процессом и контроля за этим процессом.
  4. Кабельные и проводные соединения.

Станции катодных защит достаточно результативны, при непосредственном соединении с линией электропередачи или генератору, они обеспечивают ингибирующее действие токов. При этом обеспечивается защита одновременно нескольких участков трубопровода. Регулировка параметров производиться вручную или автоматически. В первом случае используются обмотки трансформаторов, а во втором – тиристоры.

Наиболее распространенной на территории России является высокотехнологичная установка – Миневра -3000. Ее мощности предостаточно для осуществления защиты 30000 м магистралей.

Достоинства технического устройства:

  • высокие характеристики мощности;
  • обновление режима работы после перегрузок через четверть минуты;
  • с помощью цифрового регулирования осуществляется контроль за рабочими параметрами;
  • герметичность высокоответственных соединений;
  • подключение устройства к дистанционному контролю за процессом.

Также применяются АСКГ-ТМ, хотя они их мощность невелика, их оснащение телеметрическим комплексом или дистанционным управлением позволяет им быть не менее популярными.

Схема изоляционной магистрали водопровода или газопровода должна быть на месте проведения работ.

Видео: катодная защита от коррозии – какой бывает и как выполняется?

Защита от коррозии обустройством дренажа

Монтер по защите подземных трубопроводов от коррозии должен быть ознакомлен с устройством дренажа. Такая защита от образования ржавчины трубопроводов от блуждающих токов производится устройством дренажа, необходимым для отвода этих токов в другой участок земли. Всего существует несколько вариантов дренажей.

Разновидности исполнения:

  1. Выполненный под землей.
  2. Прямой.
  3. С полярностями.
  4. Усиленный.

При осуществлении земляного дренажа производят установку электродов к анодные зоны. Для обеспечения прямой дренажной линии выполняется электрическая перемычка, соединяющая трубопровод с отрицательным полюсом от источников токов, к примеру, заземлению от жилого дома.

Поляризованный дренаж имеет одностороннюю проводимость, то есть при появлении положительного заряда на заземляющем контуре он автоматически отключается. Усиленный дренаж функционирует от преобразователя тока, дополнительно подключенному в электрическую схему, а это улучшает отвод блуждающих токов от магистрали.

Прибавка на коррозию трубопроводов проводится расчетным путем, согласно РД.

Кроме всего, применяется ингибиторная защита, то есть на трубах используется специальный состав для защиты от агрессивных сред. Стояночная коррозия возникает при простое котельного оборудования продолжительное время, чтобы этого не происходило, необходимо техническое обслуживание оборудования.

Монтер по защите подземных трубопроводов от коррозии должен обладать знаниями и навыками, обучен Правилам и периодически проходить медосмотр, и сдавать экзамены в присутствии инспектора Ростехнадзора.

Позволяют продлить срок службы металлической конструкции, а также сохранить ее технико-физические свойства в процессе эксплуатации. Несмотря на разнообразие методов обеспечения противокоррозийного действия, полностью уберечь объекты от поражения ржавчиной удается лишь в редких случаях.

Эффективность такой защиты зависит не только от качества протекторной технологии, но и от условий ее применения. В частности, для сбережения металлической структуры трубопроводов свои лучшие свойства демонстрирует электрохимическая защита от коррозии, основанная на работе катодов. Предотвращение образования ржавчины на подобных коммуникациях, разумеется, не единственная сфера применения данной технологии, но по совокупности характеристик это направление можно рассматривать как наиболее актуальное для электрохимической протекции.

Общие сведения об электрохимической защите

Защита металлов от ржавчины посредством электрохимического воздействия основывается на зависимости величины материала от скорости процесса коррозии. Металлические конструкции должны эксплуатироваться в том диапазоне потенциалов, где их анодное растворение будет ниже допустимого предела. Последний, к слову, определяется технической документацией по эксплуатации сооружения.

На практике электрохимическая защита от коррозии предполагает подключение к готовому изделию источника с постоянным током. Электрическое поле на поверхности и в структуре защищаемого объекта формирует поляризацию электродов, за счет которой управляется и процесс коррозийного поражения. В сущности, анодные зоны на металлической конструкции становятся катодными, что позволяет смещать негативные процессы, обеспечивая сохранность структуры целевого объекта.

Принцип работы катодной защиты

Существует катодная и анодная защита электрохимического типа. Наибольшую популярность все же получила первая концепция, которая и применяется для защиты трубопроводов. По общему принципу, при реализации данного метода к объекту подводится ток с отрицательным полюсом от внешнего источника. В частности, таким образом может защищаться труба стальная или медная, в результате чего будет происходить поляризация катодных участков с переходом их потенциалов в анодное состояние. В итоге коррозийная активность защищаемой конструкции будет сведена практически к нулю.

При этом и катодная защита может иметь разные варианты исполнения. Широко практикуется вышеописанная техника поляризации от внешнего источника, но эффективно действует и метод деаэрации электролита с уменьшением скорости катодных процессов, а также созданием протекторного барьера.

Уже не раз отмечалось, что принцип катодной защиты реализуется за счет внешнего источника тока. Собственно, в его работе и заключается главная функция Выполняют эти задачи специальные станции, которые, как правило, входят в общую инфраструктуру технического обслуживания трубопроводов.

Станции от коррозии

Главная функция катодной станции заключается в стабильном обеспечении током целевого металлического объекта в соответствии с методом катодной поляризации. Используют такое оборудование в инфраструктуре подземных газо- и нефтепроводов, в трубах водоснабжения, тепловых сетях и т.д.

Существует множество разновидностей таких источников, при этом наиболее распространенное устройство катодной защиты предусматривает наличие в составе:

  • оборудования преобразователя тока;
  • провода для подводки к защищаемому объекту;
  • анодного заземлителя.

При этом существует разделение станций на инверторные и трансформаторные. Имеют место и другие классификации, но они ориентированы на сегментацию установок или по сферам применения, или же по техническим характеристикам и параметрам входных данных. Базовые принципы работы наиболее ярко иллюстрируют обозначенные два типа катодных станций.

Трансформаторные установки катодной защиты

Сразу следует отметить, что данный вид станций является устаревающим. На его смену как раз и приходят инверторные аналоги, которые имеют как плюсы, так и минусы. Так или иначе, трансформаторные модели применяются даже на новых пунктах обеспечения электрохимической защиты.

В качестве основы таких объектов используется низкочастотный трансформатор на 50 Гц и Для системы управления тиристорами применяются простейшие устройства, среди которых фазоимпульсные регуляторы мощности. Более ответственный подход к решению задач управления предполагает использование контроллеров с широким функционалом.

Современная катодная защита от коррозии трубопроводов с таким оснащением позволяет регулировать параметры выходного тока, показатели напряжения, а также выравнивать защитные потенциалы. Что касается недостатков трансформаторного оборудования, то они сводятся к высокой степени пульсации тока на выходе при низком коэффициенте мощности. Объясняется этот изъян не синусоидой формой тока.

Решить проблему с пульсацией в определенной мере позволяет внедрение в систему низкочастотного дросселя, но его габариты соответствуют размерам самого трансформатора, что не всегда делает возможным такое дополнение.

Инверторная станция катодной защиты

Установки инверторного типа базируются на импульсных высокочастотных преобразователях. Одним из главных преимуществ от использования станций этого типа является высокий КПД, достигающий 95%. Для сравнения, у трансформаторных установок этот показатель в среднем достигает 80%.

Иногда на первый план выходят и другие достоинства. Например, небольшие габариты инверторных станций расширяют возможности для их применения на сложных участках. Есть и финансовые преимущества, которые подтверждает практика применения такого оборудования. Так, инверторная катодная защита от коррозии трубопроводов быстро окупается и требует минимальных вложений в техническое содержание. Впрочем, эти качества отчетливо заметны лишь при сравнении с трансформаторными установками, но уже сегодня появляются более эффективные новые средства обеспечения тока для трубопроводов.

Конструкции катодных станций

Такое оборудование представлено на рынке в разных корпусах, формах и габаритах. Конечно, распространена и практика индивидуального проектирования таких систем, что позволяет не только получить оптимальную для конкретных нужд конструкцию, но и обеспечить необходимые эксплуатационные параметры.

Строгий расчет характеристик станции позволяет в дальнейшем оптимизировать затраты на ее установку, транспортировку и хранение. К примеру, для небольших объектов вполне подойдет катодная защита от коррозии трубопроводов на инверторной основе массой в 10-15 кг и мощностью 1,2 кВт. Оборудование с такими характеристиками можно обслужить и легковым автомобилем, однако для масштабных проектов могут применяться и более массивные и тяжелые станции, требующие подключения грузовой техники, подъемного крана и бригад монтажников.

Защитный функционал

Особое внимание при разработке катодных станций уделяется защите самого оборудования. Для этого интегрируются системы, позволяющие предохранять станции от короткого замыкания и обрыва нагрузок. В первом случае используются специальные предохранители, позволяющие обрабатывать аварийные режимы работы установок.

Что касается скачков и обрывов напряжения, то станция катодной защиты вряд ли серьезно пострадает от них, но зато может возникнуть опасность поражения током. Например, если в обычном режиме оборудование эксплуатируется небольшим напряжением, то после обрыва скачок в показателях может довести до 120 В.

Другие виды электрохимической защиты

Помимо катодной защиты практикуются и технологии электрического дренажа, а также протекторные методы предотвращения коррозии. Наиболее перспективным направлением считается именно специальная протекция от образования коррозии. В данном случае также к целевому объекту подключаются активные элементы, обеспечивающие преобразование поверхности с катодами посредством тока. Например, труба стальная в составе газопровода может быть защищена цинковыми или алюминиевыми цилиндрами.

Заключение

Способы электрохимической защиты нельзя отнести к новым и, тем более, инновационным. Эффективность применения подобных методик в борьбе с процессами ржавления освоена давно. Однако, широкому распространению этого способа препятствует один серьезный недостаток. Дело в том, что катодная защита от коррозии трубопроводов неизбежно вырабатывает так называемые Они не опасны для целевой конструкции, но могут оказывать негативное воздействие на близкорасположенные объекты. В частности, блуждающий ток способствует развитию той же коррозии на металлической поверхности соседних труб.

При катодной защите трубопровода положительный полюс источника постоянного тока (анод) подключается к специальному анодному заземлителю, а отрицательный (катод) – к защищаемому сооружению (рис. 2.24).

Рис. 2.24. Схема катодной защиты трубопровода

1- линия электропередачи;

2 - трансформаторный пункт;

3 - станция катодной защиты;

4 - трубопровод;

5 - анодное заземление;

6 - кабель

Принцип действия катодной защиты аналогичен электролизу. Под воздействием электрического поля начинается движение электронов от анодного заземлителя к защищаемому сооружению. Теряя электроны, атомы металла анодного заземлителя переходят в виде ионов в раствор почвенного электролита, то есть анодный заземлитель разрушается. На катоде (трубопроводе) наблюдается избыток свободных электронов (восстановление металла защищаемого сооружения).

49. Протекторная защита

При прокладке трубопроводов в труднодоступных районах, удаленных от источников электроэнергии, применяется протекторная защита (рис. 2.25).

1 - трубопровод;

2 - протектор;

3 - проводник;

4 - контрольно-измерительная колонка

Рис. 2.25. Схема протекторной защиты

Принцип действия протекторной защиты аналогичен гальванической паре. Два электрода – трубопровод и протектор (изготовленный из более электроотрицательного металла, чем сталь) соединяются проводником. При этом возникает разность потенциалов, под действием которой происходит направленное движение электронов от протектора-анода к трубопроводу-катоду. Таким образом, разрушается протектор, а не трубопровод.

Материал протектора должен отвечать следующим требованиям:

    Обеспечивать наибольшую разность потенциалов металла протектора и стали;

    Ток при растворении единицы массы протектора должен быть максимальным;

    Отношение массы протектора, израсходованной на создание защитного потенциала, к общей массе протектора должно быть наибольшим.

Предъявляемым требованиям в наибольшей степени отвечают магний, цинк и алюминий . Эти металлы обеспечивают практически равную эффективность защиты. Поэтому на практике применяют их сплавы с применением улучшающих добавок (марганца , повышающего токоотдачу и индия – увеличивающего активность протектора).

50. Электродренажная защита

Электродренажная защита предназначена для защиты трубопровода от блуждающих токов. Источником блуждающих токов является электротранспорт, работающий по схеме «провод–земля». Ток от положительной шины тяговой подстанции (контактный провод) движется к двигателю, а затем через колеса к рельсам. Рельсы соединяются с отрицательной шиной тяговой подстанции. Из-за низкого переходного сопротивления «рельсы–грунт» и нарушения перемычек между рельсами часть тока стекает в землю.

Если поблизости находится трубопровод с нарушенной изоляцией, ток проходит по трубопроводу до тех пор, пока не будет благоприятных условий для возвращения к минусовой шине тяговой подстанции. В месте выхода тока трубопровод разрушается. Разрушение происходит за короткое время, поскольку блуждающий ток стекает с небольшой поверхности.

Электродренажной защитой называется отведение блуждающих токов от трубопровода на источник блуждающих токов или специальное заземление (рис. 2.26).

Рис. 2.26. Схема электродренажной защиты

1 - трубопровод; 2 - дренажный кабель; 3 - амперметр; 4 - реостат; 5 - рубильник; 6 - вентильный элемент; 7 - плавкий предохранитель; 8 – сигнальное реле; 9 – рельс