» »

Уравнение перемещения тела при равноускоренном. Перемещение при равноускоренном движении. Уравнение координаты

17.10.2019

И время движения, можно найти пройденный путь:

Подставляя в эту формулу выражение V ср =V /2, мы найдем путь, пройденный при равноускоренном движении из состояния покоя:

Если же мы подставим в формулу (4.1) выражение V ср =V 0 /2, то получим путь, пройденный при торможении:

В последние две формулы входят скорости V 0 и V . Подставляя выражение V =at в формулу (4.2), а выражение V 0 =at - в формулу (4.3), получим

Полученная формула справедлива как для равноускоренного движения из состояния покоя, так и для движения с уменьшающейся скоростью, когда тело в конце пути останавливается. В обоих этих случаях пройденный путь пропорционален квадрату времени движения (а не просто времени, как это было в случае равномерного движения). Первым, кто установил эту закономерность, был Г. Галилей.

В таблице 2 даны основные формулы, описывающие равноускоренное прямолинейное движение.


Своей книги, в которой излагалась теория равноускоренного движения (наряду со многими другими его открытиями), Галилею увидеть не довелось. Когда она была издана. 74-летний ученый был уже слепым. Галилей очень тяжело переживал потерю зрения . "Вы можете себе представить,- писал он,- как я горюю, когда я сознаю, что это небо, этот мир и Вселенная, которые моими наблюдениями и ясными доказательствами расширены в сто и в тысячу раз по сравнению с тем, какими их считали люди науки во все минувшие столетия, теперь для меня так уменьшились и сократились".

За пять лет до этого Галилей был подвергнут суду инквизиции. Его взгляды на устройство мира (а он придерживался системы Коперника, в которой центральное место занимало Солнце, а не Земля) уже давно не нравились служителям церкви. Еще в 1614 г. доминиканский священник Каччини объявил Галилея еретиком, а математику - изобретением дьявола. А в 1616 г. инквизиция официально заявила, что "учение, приписываемое Копернику, что Земля движется вокруг Солнца, Солнце же стоит в центре Вселенной, не двигаясь с востока на запад, противно Священному писанию, а потому его не можно ни защищать, ни принимать за истину". Книга Коперника с изложением его системы мира была запрещена, а Галилея предупредили, что если "он не успокоится, то его подвергнут заключению в тюрьму".

Но Галилей "не успокоился". "В мире нет большей ненависти,- писал ученый,- чем у невежества к знанию". И в 1632 г. выходит его знаменитая книга "Диалог о двух главнейших системах мира - птолемеевой и коперниковой", в которой он привел многочисленные аргументы в пользу системы Коперника. Однако продать удалось всего лишь 500 экземпляров этого сочинения, так как уже через несколько месяцев по распоряжению Папы
Римского издатель книги получил приказ приостановить про дажу этого труда.

Осенью того же года Галилей получает предписание инквизиции явиться в Рим, и через некоторое время больного 69-летнего ученого на носилках доставляют в столицу Здесь, в тюрьме инквизиции, Галилея заставляют отречься от своих взглядов на устройство мира, и 22 июня 1633 г в римском монастыре Минервы Галилей зачитывает и подписывает заранее приготовленный текст отречения

"Я, Галилео Галилей, сын покойного Винченцо Галилея из Флоренции, 70 лет от роду, доставленный лично на суд и колено- приклоненный перед Вашими Преосвященствами, высокопреподобными господами кардиналами, генеральными инквизиторами против ереси во всем христианском мире, имея перед собой священное Евангелие и возлагая на него руки, клянусь, что я всегда верил, верую ныне и с Божией помощью буду веровать впредь во все то, что святая католическая и апостольская римская церковь признает, определяет и проповедует"

Согласно решению суда, книга Галилея была запрещена, а сам он был приговорен к тюремному заключению на неопределенный срок Однако Папа Римский помиловал Галилея и заменил заключение в тюрьме изгнанием Галилей переезжает в Арчетри и здесь, находясь под домашним арестом, пишет книгу "Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящихся к Механике и Местному движению" В 1636 г рукопись книги была переправлена в Голландию, где и была издана в 1638 г Этой книгой Галилей подводил итог своим многолетним физическим исследованиям В том же году Галилей полностью ослеп Рассказывая о постигшем великого ученого несчастье, Вивиани (ученик Галилея) писал "Случились у него тяжкие истечения из глаз, так что спустя несколько месяцев совсем остался он без глаз - да, говорю я, без своих глаз, которые за краткое время увидели в этом мире более, чем все человеческие глаза за все ушедшие столетия смогли увидеть и наблюсти"

Посетивший Галилея флорентийский инквизитор в своем письме в Рим сообщил, что нашел его в очень тяжелом состоянии На основании этого письма Папа Римский разрешил Галилею вернуться в родной дом во Флоренции Здесь ему сразу же вручили предписание "Под страхом пожизненного заключения в истинную тюрьму и отлучения от церкви не выходить в город и ни с кем, кто бы это ни был, не говорить о проклятом мнении насчет двоякого движения Земли"

У себя дома Галилей пробыл недолго Через несколько месяцев ему снова было приказано приехать в Арчетри Жить ему оставалось около четырех лет 8 января 1642 г в четыре часа ночи Галилей умер.

1. Чем отличается равноускоренное движение от равномерного? 2. Чем отличается формула пути при равноускоренном движении от формулы пути при равномерном движении? 3. Что вы знаете о жизни и творчестве Г. Галилея? В каком году он родился?

Отослано читателями из интернет-сайтов

Материалы с физики 8 класс, задание и ответы с физики по классам, конспекты для подготовке к урокам физики, планы конспектов уроков по физике 8 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Когда на дороге происходит авария, специалисты измеряют тормозной путь. Зачем? Чтобы определить скорость движения автомобиля в начале торможения и ускорение при торможении. Все это нужно для выяснения причин аварии: или водитель превысил скорость, или были неисправны тормоза, или с автомобилем все в порядке, а виноват нарушивший правила дорожного движения пешеход. Как, зная время торможения и тормозной путь, определить скорость и ускорение движения тела?

Узнаём о геометрическом смысле проекции перемещения

В 7 классе вы узнали, что для любого движения путь численно равен площади фигуры под графиком зависимости модуля скорости движения от времени наблюдения. Аналогичная ситуация и с определением проекции перемещения (рис. 29.1).

Получим формулу для вычисления проекции перемещения тела за интервал времени от t: = 0 до t 2 = t. Рассмотрим равноускоренное прямолинейное движение, при котором начальная скорость и ускорение имеют одинаковое направление с осью OX. В этом случае график проекции скорости имеет вид, представленный на рис. 29.2, а проекция перемещения численно равна площади трапеции OABC:

На графике отрезок OAсоответствует проекции начальной скорости v 0 x, отрезок BC — проекции конечной скорости v x , а отрезок OC — интервалу времени t. Заменив данные отрезки соответствующими физическими величинами и учитывая, что s x = S OABC , получим формулу для определения проекции перемещения:

Формулу (1) применяют для описания любого равноускоренного прямолинейного движения.

Определите перемещение тела, график движения которого представлен на рис. 29.1, б, за 2 с и за 4 с после начала отсчета времени. Поясните ответ.

Записываем уравнение проекции перемещения

Исключим переменную v x из формулы (1). Для этого вспомним, что при равноускоренном прямолинейном движении v x = v 0 x + a x t. Подставив выражение для v x в формулу (1), получим:

Таким образом, для равноускоренного прямолинейного движения получено уравнение проекции перемещения:


Рис. 29.3. График проекции перемещения при равноускоренном прямолинейном движении — парабола, проходящая через начало координат: если a x > 0, ветви параболы направлены вверх (а); если a x <0, ветви параболы направлены вниз (б)

Рис. 29.4. Выбор оси координат в случае прямолинейного движения

Итак, график проекции перемещения при равноускоренном прямолинейном движении — парабола (рис. 29.3), вершина которой соответствует точке разворота:

Поскольку величины v 0 x и a x не зависят от времени наблюдения, зависимость s x (ί) является квадратичной. Например, если

можно получить еще одну формулу для вычисления проекции перемещения при равноускоренном прямолинейном движении:

Формулой (3) удобно пользоваться, если в условии задачи не идет речь о времени движения тела и не нужно его определять.

Выведите формулу (3) самостоятельно.

Обратите внимание: в каждой формуле (1-3) проекции v x , v 0 x и a x могут быть как положительными, так и отрицательными — в зависимости от того, как направлены векторы v, v 0 и a относительно оси OX.

Записываем уравнение координаты

Одна из основных задач механики — определение положения тела (координат тела) в любой момент времени. Мы рассматриваем прямолинейное движение, поэтому достаточно выбрать одну ось координат (например, ось OX), которую следует

направить вдоль движения тела (рис. 29.4). Из данного рисунка видим, что независимо от направления движения координату х тела можно определить по формуле:

Рис. 29.5. При равноускоренном прямолинейном движении график зависимости координаты от времени — парабола, пересекающая ось х в точке х 0

где х 0 — начальная координата (координата тела в момент начала наблюдения); s x — проекция перемещения.

поэтому для такого движения уравнение координаты имеет вид:

Для равноускоренного прямолинейного движения

Проанализировав последнее уравнение, делаем вывод, что зависимость х(ί) — квадратичная, поэтому график координаты — парабола(рис. 29.5).


Учимся решать задачи

Основные этапы решения задач на равноускоренное прямолинейное движение рассмотрим на примерах.

Пример решения задачи

Последовательность

действий

1. Внимательно прочитайте условие задачи. Определите, какие тела принимают участие в движении, каков характер движения тел, какие параметры движения известны.

Задача 1. После начала торможения поезд прошел до остановки 225 м. Какой была скорость движения поезда перед началом торможения? Считайте, что во время торможения ускорение поезда неизменно и равно 0,5 м/с 2 .

На пояснительном рисунке направим ось ОХ в направлении движения поезда. Так как поезд уменьшает свою скорость, то

2. Запишите краткое условие задачи. При необходимости переведите значения физических величин в единицы СИ. 2

Задача 2. По прямолинейному участку дороги идет пешеход с постоянной скоростью 2 м/с. Его догоняет мотоцикл, который увеличивает свою скорость, двигаясь с ускорением 2 м/с 3 . Через какое время мотоцикл обгонит пешехода, если на момент начала отсчета времени расстояние между ними было 300 м, а мотоцикл двигался со скоростью 22 м/с? Какое расстояние проедет мотоцикл за это время?

1. Внимательно прочитайте условие задачи. Выясните характер движения тел, какие параметры движения известны.

Подводим итоги

Для равноускоренного прямолинейного движения тела: проекция перемещения численно равна площади фигуры под графиком проекции скорости движения — графиком зависимости v x (ί):

3. Выполните пояснительный рисунок, на котором покажите ось координат, положения тел, направления ускорений и скоростей.

4. Запишите уравнение координаты в общем виде; воспользовавшись рисунком, конкретизируйте это уравнение для каждого тела.

5. Учитывая, что в момент встречи (обгона) координаты тел одинаковы, получите квадратное уравнение.

6. Решите полученное уравнение и найдите время встречи тел.

7. Вычислите координату тел в момент встречи.

8. Найдите искомую величину и проанализируйте результат.

9. Запишите ответ.

в этом состоит геометрический смысл перемещения;

уравнение проекции перемещения имеет вид:

Контрольные вопросы

1. С помощью каких формул можно найти проекцию перемещения s x для равноускоренного прямолинейного движения? Выведите эти формулы. 2. Докажите, что график зависимости перемещения тела от времени наблюдения — парабола. Как направлены ее ветви? Какому моменту движения соответствует вершина параболы? 3. Запишите уравнение координаты для равноускоренного прямолинейного движения. Какие физические величины связывает это уравнение?

Упражнение № 29

1. Лыжник, движущийся со скоростью 1 м/с, начинает спускаться c горы. Определите длину спуска, если лыжник проехал его за 10 с. Считайте, что ускорение лыжника было неизменным и составляло 0,5 м/с 2 .

2. Пассажирский поезд изменил свою скорость от 54 км/ч до 5 м/с. Определите расстояние, которое проехал поезд во время торможения, если ускорение поезда было неизменным и составляло 1 м/с 2 .

3. Тормоза легкового автомобиля исправны, если при скорости 8 м/с его тормозной путь — 7,2 м. Определите время торможения и ускорение автомобиля.

4. Уравнения координат двух тел, движущихся вдоль оси OX, имеют вид:

1) Для каждого тела определите: а) характер движения; б) начальную координату; в) модуль и направление начальной скорости; г) ускорение.

2) Найдите время и координату встречи тел.

3) Для каждого тела запишите уравнения v x (t) и s x (t), постройте графики проекций скорости и перемещения.

5. На рис. 1 представлен график проекции скорости движения для некоторого тела.

Определите путь и перемещение тела за 4 с от начала отсчета времени. Запишите уравнение координаты, если в момент времени t = 0 тело было в точке с координатой -20 м.

6. Два автомобиля начали движение из одного пункта в одном направлении, причем второй автомобиль выехал на 20 с позже. Оба автомобиля движутся равноускоренно с ускорением 0,4 м/с 2 . Через какой интервал времени после начала движения первого автомобиля расстояние между автомобилями будет 240 м?

7. На рис. 2 представлен график зависимости координаты тела от времени его движения.

Запишите уравнение координаты, если известно, что модуль ускорения 1,6 м/с 2 .

8. Эскалатор в метро поднимается со скоростью 2,5 м/с. Может ли человек на эскалаторе находиться в состоянии покоя в системе отсчета, связанной с Землей? Если может, то при каких условиях? Можно ли при этих условиях движение человека считать движением по инерции? Обоснуйте свой ответ.

Это материал учебника

Страница 8 из 12

§ 7. Перемещение при равноускоренном
прямолинейном движении

1. Используя график зависимости скорости от времени, можно получить формулу перемещения тела при равномерном прямолинейном движении.

На рисунке 30 приведен график зависимости проекции скорости равномерного движения на ось X от времени. Если восставить перпендикуляр к оси времени в некоторой точке C , то получим прямоугольник OABC . Площадь этого прямоугольника равна произведению сторон OA и OC . Но длина стороны OA равна v x , а длина стороны OC - t , отсюда S = v x t . Произведение проекции скорости на ось X и времени равно проекции перемещения, т. е. s x = v x t .

Таким образом, проекция перемещения при равномерном прямолинейном движении численно равна площади прямоугольника, ограниченного осями координат, графиком скорости и перпендикуляром, восставленным к оси времени.

2. Получим аналогичным образом формулу проекции перемещения при прямолинейном равноускоренном движении. Для этого воспользуемся графиком зависимости проекции скорости на ось X от времени (рис. 31). Выделим на графике малый участок ab и опустим перпендикуляры из точек a и b на ось времени. Если промежуток времени Dt , соответствующий участку cd на оси времени, мал, то можно считать, что скорость в течение этого промежутка времени не изменяется и тело движется равномерно. В этом случае фигура cabd мало отличается от прямоугольника и ее площадь численно равна проекции перемещения тела за время, соответствующее отрезку cd .

На такие полоски можно разбить всю фигуру OABC , и ее площадь будет равна сумме площадей всех полосок. Следовательно, проекция перемещения тела за время t численно равна площади трапеции OABC . Из курса геометрии вы знаете, что площадь трапеции равна произведению полусуммы ее оснований и высоты:S = (OA + BC )OC .

Как видно из рисунка 31, OA = v 0x , BC = v x , OC = t . Отсюда следует, что проекция перемещения выражается формулой: s x = (v x + v 0x )t .

При равноускоренном прямолинейном движении скорость тела в любой момент времени равна v x = v 0x + a x t , следовательно,s x = (2v 0x + a x t )t .

Отсюда:

Чтобы получить уравнение движения тела, подставим в формулу проекции перемещения ее выражение через разность координат s x = x x 0 .

Получим: x x 0 = v 0x t + , или

x = x 0 + v 0x t + .

По уравнению движения можно определить координату тела в любой момент времени, если известны начальная координата, начальная скорость и ускорение тела.

3. На практике часто встречаются задачи, в которых нужно найти перемещение тела при равноускоренном прямолинейном движении, но время движения при этом неизвестно. В этих случаях используют другую формулу проекции перемещения. Получим ее.

Из формулы проекции скорости равноускоренного прямолинейного движения v x = v 0x + a x t выразим время:

t = .

Подставив это выражение в формулу проекции перемещения, получим:

s x = v 0x + .

Отсюда:

s x = , или
–= 2a x s x .

Если начальная скорость тела равно нулю, то:

2a x s x .

4. Пример решения задачи

Лыжник съезжает со склона горы из состояния покоя с ускорением 0,5 м/с 2 за 20 с и дальше движется по горизонтальному участку, проехав до остановки 40 м. С каким ускорением двигался лыжник по горизонтальной поверхности? Какова длина склона горы?

Дано :

Решение

v 01 = 0

a 1 = 0,5 м/с 2

t 1 = 20 с

s 2 = 40 м

v 2 = 0

Движение лыжника состоит из двух этапов: на первом этапе, спускаясь со склона горы, лыжник движется с возрастающей по модулю скоростью; на втором этапе при движении по горизонтальной поверхности его скорость уменьшается. Величины, относящиеся к первому этапу движения, запишем с индексом 1, а ко второму этапус индексом 2.

a 2?

s 1?

Систему отсчета свяжем с Землей, ось X направим по направлению скорости лыжника на каждом этапе его движения (рис. 32).

Запишем уравнение для скорости лыжника в конце спуска с горы:

v 1 = v 01 + a 1 t 1 .

В проекциях на ось X получим: v 1x = a 1x t . Поскольку проекции скоростии ускорения на ось X положительны, модуль скорости лыжника равен: v 1 = a 1 t 1 .

Запишем уравнение, связывающее проекции скорости, ускорения и перемещения лыжника на втором этапе движения:

–= 2a 2x s 2x .

Учитывая, что начальная скорость лыжника на этом этапе движения равна его конечной скорости на первом этапе

v 02 = v 1 , v 2x = 0 получим

– = –2a 2 s 2 ; (a 1 t 1) 2 = 2a 2 s 2 .

Отсюда a 2 = ;

a 2 == 0,125 м/с 2 .

Модуль перемещения лыжника на первом этапе движения равен длине склона горы. Запишем уравнение для перемещения:

s 1x = v 01x t + .

Отсюда длина склона горы равна s 1 = ;

s 1 == 100 м.

Ответ: a 2 = 0,125 м/с 2 ; s 1 = 100 м.

Вопросы для самопроверки

1. Как по графику зависимости проекции скорости равномерного прямолинейного движения на ось X

2. Как по графику зависимости проекции скорости равноускоренного прямолинейного движения на ось X от времени определить проекцию перемещения тела?

3. По какой формуле рассчитывается проекция перемещения тела при равноускоренном прямолинейном движении?

4. По какой формуле рассчитывается проекция перемещения тела, движущегося равноускоренно и прямолинейно, если начальная скорость тела равна нулю?

Задание 7

1. Чему равен модуль перемещения автомобиля за 2 мин, если за это время его скорость изменилась от 0 до 72 км/ч? Какова координата автомобиля в момент времени t = 2 мин? Начальную координату считать равной нулю.

2. Поезд движется с начальной скоростью 36 км/ч и ускорением0,5 м/с 2 . Чему равны перемещение поезда за 20 с и его координата в момент времени t = 20 с, если начальная координата поезда 20 м?

3. Каково перемещение велосипедиста за 5 с после начала торможения, если его начальная скорость при торможении равна 10 м/с,а ускорение составляет 1,2 м/с 2 ? Чему равна координата велосипедиста в момент времени t = 5 с, если в начальный момент времени он находился в начале координат?

4. Автомобиль, движущийся со скоростью 54 км/ч, останавливается при торможении в течение 15 с. Чему равен модуль перемещения автомобиля при торможении?

5. Два автомобиля движутся навстречу друг другу из двух населенных пунктов, находящихся на расстоянии 2 км друг от друга. Начальная скорость одного автомобиля 10 м/с и ускорение 0,2 м/с 2 , начальная скорость другого - 15 м/с и ускорение 0,2 м/с 2 . Определите время и координату места встречи автомобилей.

Лабораторная работа № 1

Исследование равноускоренного
прямолинейного движения

Цель работы:

научиться измерять ускорение при равноускоренном прямолинейном движении; экспериментально установить отношение путей, проходимых телом при равноускоренном прямолинейном движении за последовательные равные промежутки времени.

Приборы и материалы:

желоб, штатив, металлический шарик, секундомер, измерительная лента, цилиндр металлический.

Порядок выполнения работы

1. Укрепите в лапке штатива один конец желоба так, чтобы он составлял небольшой угол с поверхностью стола.У другого конца желоба положите в него цилиндр металлический.

2. Измерьте пути, проходимые шариком за 3 последовательных промежутка времени, равных 1 с каждый. Это можно сделать по‑разному. Можно поставить мелом на желобе метки, фиксирующие положения шарика в моменты времени, равные 1 с, 2 с, 3 с, и измерить расстояния s_ между этими метками. Можно, отпуская каждый раз шарик с одной и той же высоты, измерить путь s , пройденный им сначала за 1 с, затем за 2 с и за 3 с, а затем рассчитать путь, пройденный шариком за вторую и третью секунды. Результаты измерений запишите в таблицу 1.

3. Найдите отношения пути, пройденного за вторую секунду, к пути, пройденному за первую секунду, и пути, пройденного за третью секунду, к пути, пройденному за первую секунду. Сделайте вывод.

4. Измерьте время движения шарика по желобу и пройденныйим путь. Вычислите ускорение его движения, используя формулуs = .

5. Используя экспериментально полученное значение ускорения, вычислите пути, которые должен пройти шарик за первую, вторую и третью секунды своего движения. Сделайте вывод.

Таблица 1

№ опыта

Экспериментальные данные

Теоретические результаты

Время t, с

Путь s, см

Время t, с

Путь

s, см

Ускорение a, см/с2

Время t , с

Путь s, см

1

1

1

Самое важное для нас - это уметь вычислять перемещение тела, потому что, зная перемещение, можно найти и координаты тела, а это и есть главная задача механики. Как же вычислить перемещение при равноускоренном движении?

Формулу для определения перемещения проще всего получить, если воспользоваться графическим методом.

В § 9 мы видели, что при прямолинейном равномерном движении перемещение тела численно равно площади фигуры (прямоугольника), расположенной под графиком скорости. Верно ли это для равноускоренного движения?

При равноускоренном движении тела, происходящем вдоль координатной оси X, скорость с течением времени не остается постоянной, а меняется со временем согласно формулам:

Поэтому графики скорости имеют вид, показанный на рисунке 40. Прямая 1 на этом рисунке соответствует движению с «положительным» ускорением (скорость растет), прямая 2 - движению с «отрицательным» ускорением (скорость убывает). Оба графика относятся к случаю, когда в момент времени тело имело скорость

Выделим на графике скорости равноускоренного движения маленький участок (рис. 41) и опустим из точек а и перпендикуляры на ось Длина отрезка на оси численно равна тому малому промежутку времени, за который скорость изменилась от ее значения в точке а до ее значения в точке Под участком графика получилась узкая полоска

Нели промежуток времени, численно равный отрезку достаточно мал, то в течение этого времени изменение скорости тоже мало. Движение в течение этого промежутка времени можно считать равномерным, и полоска будет тогда мало отличаться от прямоугольника. Площадь полоски поэтому численно равна перемещению тела за время, соответствующее отрезку

Но на такие узкие полоски можно разбить всю площадь фигуры, расположенной под графиком скорости. Следовательно, перемещение за все время численно равно площади трапеции Площадь же трапеции, как известно из геометрии, равна произведению полусуммы ее оснований на высоту. В нашем случае длина одного из оснований трапеции численно равна длина другого - V. Высота же ее численно равна Отсюда следует, что перемещение равно:

Подставим в эту формулу вместо выражение (1а), тогда

Разделив почленно числитель на знаменатель, получим:

Подставив в формулу (2) выражение (16), получим (см. рис. 42):

Формулу (2а) применяют в том случае, когда вектор ускорения направлен так же, как и ось координат, а формулу (26) тогда, когда направление вектора ускорения противоположно направлению этой оси.

Если начальная скорость равна нулю (рис. 43) и вектор ускорения направлен по оси координат, то из формулы (2а) следует, что

Если же направление вектора ускорения противоположно направлению оси координат, то из формулы (26) следует, что

(знак «-» здесь означает, что вектор перемещения, так же как и вектор ускорения, направлен противоположно выбранной оси координат).

Напомним, что в формулах (2а) и (26) величины и могут быть как положительными, так и отрицательными - это проекции векторов и

Теперь, когда мы получили формулы для вычисления перемещения, нам легко получить и формулу для вычисления координаты тела. Мы видели (см. § 8), что, для того чтобы найти координату тела в какой-то момент времени надо к начальной координате прибавить проекцию вектора перемещения тела на ось координат:

(За) если вектор ускорения направлен так же, как и ось координат, и

если направление вектора ускорения противоположно направлению оси координат.

Это и есть формулы, позволяющие находить положение тела в любой момент времени при прямолинейном равноускоренном движении. Для этого нужно знать начальную координату тела его начальную скорость и ускорение а.

Задача 1. Водитель автомобиля, движущегося со скоростью 72 км/ч, увидел красный сигнал светофора и нажал на тормоз. После этого автомобиль начал тормозить, двигаясь с ускорением

Какое расстояние пройдет автомобиль за время сек после начала торможения? Какое расстояние пройдет автомобиль до полной остановки?

Решение. За начало координат выберем ту точку дороги, в которой автомобиль начал тормозить. Координатную ось направим по направлению движения автомобиля (рис. 44), а начало отсчета времени отнесем к моменту, в который водитель нажал на тормоз. Скорость автомобиля направлена так же, как ось X, а ускорение автомобиля противоположно направлению этой оси. Поэтому проекция скорости на ось X положительна, а проекция ускорения отрицательна и координату автомобиля нужно находить по формуле (36):

Подставляя в эту формулу значения

Теперь найдем, какое расстояние пройдет автомобиль до полной остановки. Для этого нам нужно знать время движения . Его можно узнать, воспользовавшись формулой

Так как в тот момент, когда автомобиль останавливается, его скорость равна нулю, то

Расстояние, которое пройдет автомобиль до полной остановки, равно координате автомобиля в момент времени

Задача 2. Определите перемещение тела, график скорости которого показан на рисунке 45. Ускорение тела равно а.

Решение. Так как сначала модуль скорости тела уменьшается со временем, то вектор ускорения направлен противоположно направлению . Для вычисления перемещения мы можем воспользоваться формулой

Из графика видно, что и время движения поэтому:

Полученный ответ показывает, что график, изображенный на рисунке 45, соответствует движению тела сначала в одном направлении, а затем на такое же расстояние в противоположном направлении, в результате чего тело оказывается в исходной точке. Подобный график может, например, относиться к движению тела, брошенного вертикально вверх.

Задача 3. Тело движется вдоль прямой равноускоренно с ускорением а. Найдите разность расстояний, проходимых телом за два следующих один за другим одинаковых промежутка времени т.

Решение. Примем прямую, вдоль которой движется тело, за ось X. Если в точке А (рис. 46) скорость тела была равна то его перемещение за время равно:

В точке В тело имело скорость и его перемещение за следующий промежуток времени равно:

2. На рисунке 47 изображены графики скорости движения трех тел? Каков характер движения этих тел? Что можно сказать о скоростях движения тел в моменты времени, соответствующие точкам А и В? Определите ускорения и напишите уравнения движений (формулы для скорости и перемещения) этих тел.

3. Пользуясь приведенными на рисунке 48 графиками скоростей трех тел, выполните следующие задания: а) Определите ускорения этих тел; б) составьте для

каждого тела формулу зависимости скорости от времени: в) в чем сходны и чем различаются движения, соответствующие графикам 2 и 3?

4. На рисунке 49 показаны графики скорости движения трех тел. По этим графикам: а) определите, чему соответствуют отрезки ОА, ОВ и ОС на осях координат; 6) найдите ускорения, с которыми движутся тела: в) напишите уравнения движения для каждого тела.

5. Самолет при взлете проходит взлетную полосу за 15 сек и в момент отрыва от зедлли имеет скорость 100 м/сек. С каким ускорением двигался самолет и какова длина взлетной полосы?

6. Автомобиль остановился у светофора. После того как загорелся зеленый сигнал, он начинает двигаться с ускорением и движется гак до тех пор, пока скорость его не станет равной 16 м/сек, после чего он продолжает движение с постоянной скоростью. На каком расстоянии от светофора окажется автомобиль через 15 сек после появления зеленого сигнала?

7. Снаряд, скорость которого равна 1 000 м/сек, пробивает стену блиндажа за и после этого имеет скорость 200 м/сек. Считая движение снаряда в толще стены равноускоренным, найдите толщину стены.

8. Ракета движется с ускорением и к некоторому моменту времени достигает скорости в 900 м/сек. Какой путь она пройдет в следующие

9. На каком расстоянии от Земли оказался бы космический корабль через 30 мин после старта, если бы он все время двигался прямолинейно с ускорением

Равноускоренное движение - это движение с ускорением, вектор которого не меняется по модулю и направлению. Примеры такого движения: велосипед, который катится с горки; камень брошенный под углом к горизонту.

Рассмотрим последний случай более подробно. В любой точке траектории на камень действует ускорение свободного падения g → , которое не меняется по величине и всегда направлено в одну сторону.

Движение тела, брошенного под углом к горизонту, можно представить в виде суммы движений относительно вертикальной и горизонтальной осей.

Вдоль оси X движение равномерное и прямолинейное, а вдоль оси Y - равноускоренное и прямолинейное. Будем рассматривать проекции векторов скорости и ускорения на оси.

Формула для скорости при равноускоренном движении:

Здесь v 0 - начальная скорость тела, a = c o n s t - ускорение.

Покажем на графике, что при равноускоренном движении зависимость v (t) имеет вид прямой линии.

Ускорение можно определить по углу наклона графика скорости. На рисунке выше модуль ускорения равен отношению сторон треугольника ABC.

a = v - v 0 t = B C A C

Чем больше угол β , тем больше наклон (крутизна) графика по отношению к оси времени. Соответственно, тем больше ускорение тела.

Для первого графика: v 0 = - 2 м с; a = 0 , 5 м с 2 .

Для второго графика: v 0 = 3 м с; a = - 1 3 м с 2 .

По данному графику можно также вычислить перемещение тела за время t . Как это сделать?

Выделим на графике малый отрезок времени ∆ t . Будем считать, что он настолько мал, что движение за время ∆ t можно считать равномерным движением со скоростью, равной скорости тела в середине промежутка ∆ t . Тогда, перемещение ∆ s за время ∆ t будет равно ∆ s = v ∆ t .

Разобьем все время t на бесконечно малые промежутки ∆ t . Перемещение s за время t равно площади трапеции O D E F .

s = O D + E F 2 O F = v 0 + v 2 t = 2 v 0 + (v - v 0) 2 t .

Мы знаем, что v - v 0 = a t , поэтому окончательная формула для перемещения тела примет вид:

s = v 0 t + a t 2 2

Для того, чтобы найти координату нахождения тела в данный момент времени, нужно к начальной координате тела добавить перемещение. Изменение координаты при равноускоренном движении выражает закон равноускоренного движения.

Закон равноускоренного движения

Закон равноускоренного движения

y = y 0 + v 0 t + a t 2 2 .

Еще одна распространенная задача, которая возникает при анализе равноускоренного движения - нахождение перемещения при заданных значениях начальной и конечной скоростей и ускорения.

Исключая из записанных выше уравнений t и решая их, получаем:

s = v 2 - v 0 2 2 a .

По известным начальной скорости, ускорению и перемещению можно найти конечную скорость тела:

v = v 0 2 + 2 a s .

При v 0 = 0 s = v 2 2 a и v = 2 a s

Важно!

Величины v , v 0 , a , y 0 , s , входящие в выражения, являются алгебраическими величинами. В зависимости от характера движения и направления координатных осей в условиях конкретной задачи они могут принимать как положительные, так и отрицательные значения.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter