» »

Что такое композиционные материалы? Композиционный материал Примеры природных и искусственных композитов

27.07.2019

Введение

За последние несколько лет огромное внимание уделяется созданию и исследованию так называемых мультиферроиков - материалов, проявляющих одновременно ферроэлектрические и ферромагнитные свойства.

Мультиферроики могут быть реализованы как в монофазный, так и в композитной форме. Большинство из однофазных мультиферроичных материалов обнаруживают магнитоэлектрические свойства в низкотемпературных областях, главным образом, при криогенных температурах.

Альтернативу этим практически неприменимым однофазным мультиферроикам нашли в материалах, так называемых композитах, искусственно созданных материалах комбинацией двух фаз, например, комбинацией пьезоэлектрических и пьезомагнитных фаз или магнитострикционных и пьезоэлектрических фаз. Эти материалы сохраняют равновесные ферроэлектрические структуры при температурах, близких к комнатной. Они имеют большой магнитоэлектрический (МЕ) эффект, магнитострикционные и пьезоэлектрические фазы хорошего качества и относятся к так называемым мультифункциональным материалом. Главным достижением в производстве синтетических композитных мультиферроиков - это достаточно легкое и дешевое их изготовление и возможность контроля за молекулярным соотношением фаз и размером зёрен каждой фазы. Имеется и проблема, связанная с предотвращение возможной химической реакции на границах между ферроэлектрическим и магнитными фазами в течение синтеза, приводящей к потере, например, диэлектрических свойств. Вообще, в композитах размеры зёрен, форма и границы между зёрнами - основные элементы, приводящие при сохранении «родительских» свойств фаз к возникновению новых свойств. Так, известно, что может произойти усиление колоссального магнитного сопротивления (CRM), объясняемое в модели спин-поляризационного туннелирования появление непроводящих слоев-барьеров между зёрнами.

Передо мной тогда были поставлены задачи:

1) ознакомиться с литературой, посвященной композиционным мультиферроикам, представленного образца;

2) изучить свойства и структуру (La 0.5 Eu 0.5) 0.7 Pb 0.3 MnO 3 и PbTiO 3 ;

3) синтезировать в поликристаллическом виде PbTiO 3 и вырастить монокристалл (La 0.5 Eu 0.5) 0.7 Pb 0.3 MnO 3 ;

4) начать исследование магнитных, магнитоэлектрических и других свойств (1-х) (La 0.5 Eu 0.5) 0.7 Pb 0.3 MnO 3 +хPbTiO 3 .

Примеры композитов

Что такое композиты?

Композиционными называют материалы, образованные из двух или более разнородных фаз и обладающие характеристиками, не присущими исходным компонентам. Такое определение хорошо отражает идею композита, но является слишком широким, поскольку охватывает подавляющее большинство материалов и сплавов (например, стали, чугун, бетон и др.). По-видимому, лучшим будет другое определение: композиты - объемное монолитное искусственное сочетание разнообразных по форме и свойствам двух и более материалов (компонентов), с четкой границей раздела, использующее преимущества каждого из компонентов и проявляющее новые свойства, обусловленные граничными процессами.

Обычно композиты представляют собой основу (матрицу) из одного материала, армированную наполнителями из волокон, слоев, диспергированных частиц другого материала. При этом сочетаются прочностные свойства обоих компонентов. Путём подбора состава и свойств наполнителя и матрицы, их соотношение, ориентации наполнителя, можно получить материал с требуемым сочетанием эксплуатационных и технологических характеристик.

Композит отличается от сплава тем, что в готовом композите отдельные компоненты сохраняют присущие им свойства. Компоненты должны взаимодействовать на границе раздела композита, проявляя только положительные новые свойства. Такой результат можно получить лишь в том случае, если в композиционном материале успешно объединены свойства компонентов, т.е. при эксплуатации композита должны проявляться только требуемые свойства компонентов, а их недостатки полностью или частично уничтожаются.

Таким образом:

Получаемый композит приобретает новые, лучшие свойства и, следовательно, может выполнять дополнительные функции (многофункциональный материал);

Характеристики композита лучше, чем у его компонентов, взятых по отдельности или вместе без учета граничных процессов;

Действия отдельных компонентов композита всегда проявляются в их совокупности с учетом процессов, происходящих на границе раздела фаз.

Активное применение композитов началось с начала 70-х годов, хотя идея применения двух и более исходных материалов в качестве компонентов, образующих композиционную среду, существует с тех пор, как люди стали иметь дело с материалами.

Цель создания композита - достичь комбинации свойств, не присущих каждому из исходных материалов в отдельности. Таким образом, композит может изготавливаться из материалов, которые сами по себе не удовлетворяют предъявляемым требованиям. Так как эти требования могут относиться к физическим, химическим, технологическим и другим свойствам, то наука о композитах находится на стыке различных областей знания и требует участия исследователей различных специальностей.

Традиционный выбор материала и проектирование компонентов конструкции были отдельными задачами. Когда композиты стали вытеснять металлы и сплавы из таких областей, как самолето-, судо- и автомобилестроение, промышленный дизайн и выбор материала соединились и стали просто различными аспектами одного процесса.

Следует отметить, что наряду с конструкционной анизотропией композита существуют технологическая анизотропия, возникающая при пластической деформации изотропных материалов, и физическая анизотропия, присущая, например, кристаллам и связанная с особенностями строения кристаллической решетки.

По методу получения различают два вида композитов: искусственные и естественные. К искусственным относятся все композиты, полученные в результате искусственного введения армирующей фазы в матрицу, к естественным - сплавы эвтектического и близкого к ним состава. В эвтектических композитах армирующей фазой являются ориентированные волокнистые или пластинчатые кристаллы, образованные естественным путём в процессе направленной кристаллизации.

По мере создания новых композитов «старые» виды классификации расширяются и могут возникать новые.

При изучении литературы, посвященной магнитным и магнитоэлектрическим композитам, я нашла следующие композиты на основе оксидов, которые синтезированы и изучены:

1. «MgFe 2 O 3 -BaTiO 3 » ;

2. «BaTiO 3 - (Ni, Zn) Fe 2 O 4 » ;

3. «La 0.67 Ca 0.33 MnO 3 -CuFe 2 O 4 » ;

4. «(La 0.7 Ca 0.3 MnO 3) 1-x /(MgO) x » ;

5. «La 2/3 Ca 1/3 MnO 3 /SiO 2 » ;

6. «La 0.7 Sr 0.3 MnO 3 /Ta 2 O 5 » .

В истории развития техники может быть выделено два важных направления:

  • развитие инструментов, конструкций, механизмов и машин,
  • развитие материалов.

Какое из них главнее сказать сложно, т.к. они довольно тесно взаимосвязаны, но без развития материалов технический прогресс невозможен в принципе. Не случайно, историки подразделяют ранние цивилизационные эпохи на каменный век, бронзовый век и век железный.

Нынешний 21 век уже можно отнести к веку композиционных материалов (композитов).

Понятие композиционных материалов сформировалось в середине прошлого, 20 века. Однако, композиты вовсе не новое явление, а только новый термин, сформулированный материаловедами для лучшего понимания генезиса современных конструкционных материалов.

Композиционные материалы известны на протяжении столетий. Например, в Вавилоне использовали тростник для армирования глины при постройке жилищ, а древние египтяне добавляли рубленную солому в глиняные кирпичи. В Древней Греции железными прутьями укрепляли мраморные колонны при постройке дворцов и храмов. В 1555-1560 при постройке храма Василия Блаженного в Москве русские зодчие Барма и Постник использовали армированные железными полосами каменные плиты. Прямыми предшественниками современных композиционнных материалов можно назвать железобетон и булатные стали.

Существуют природные аналоги композиционных материалов - древесина, кости, панцири и т.д. Многие виды природных минералов фактически представляют собой композиты. Они не только прочны, но обладают также превосходными декоративными свойствами.

Композиционные материалы - многокомпонентные материалы, состоящие из пластичной основы - матрицы, и наполнителей, играющих укрепляющую и некоторые другие роли. Между фазами (компонентами) композита имеется граница раздела фаз.

Сочетание разнородных веществ приводит к созданию нового материала, свойства которого существенно отличаются от свойств каждого из его составляющих. Т.е. признаком композиционного материала является заметное взаимное влияние составных элементов композита, т.е. их новое качество, эффект.

Варьируя состав матрицы и наполнителя, их соотношение, применяя специальные дополнительные реагенты и т.д., получают широкий спектр материалов с требуемым набором свойств.

Большое значение расположение элементов композитного материала, как в направлениях действующих нагрузок, так и по отношению друг к другу, т.е. упорядоченность. Высокопрочные композиты, как правило, имеют высокоупорядоченную структуру.

Простой пример. Горсть древесных опилок, брошенная в ведро цементного раствора никак не повлияет на его свойства. Если опилками заменить половину раствора - то существенно изменится плотность материала, его теплофизические константы, себестоимость производства и др. показатели. Но, горсть полипропиленовых волокон сделает бетон ударопрочным и износостойким, а полведра фибры обеспечат ему упругость, совсем не свойственную минеральным материалам.

В настоящее время в область композиционных материалов (композитов), принято включать разнообразные искусственные материалы, разрабатываемые и внедряемые в различных отраслях техники и промышленности, отвечающие общим принципам создания композитных материалов

Почему интерес к композиционным материалам проявляется именно сейчас? Потому, что традиционные материалы уже не всегда или не вполне отвечают потребностям современной инженерной практики.

Матрицами в композиционных материалах являются металлы, полимеры, цементы и керамика. В качестве наполнителей используются самые разнообразные искусственные и природные вещества в различных формах (крупноразмерные, листовые, волокнистые, дисперсные, мелкодисперсные, микродисперсные, наночастицы).

Известны также многокомпонентные композиционные материалы, в т.ч.:

  • полиматричные, когда в одном композиционном материале сочетают несколько матриц,
  • гибридные, включающие несколько разных наполнителей, каждый из которых имеет свою роль.

Наполнитель, как правило, определяет прочность, жесткость и деформируемость композита, а матрица обеспечивает его монолитность, передачу напряжений и стойкость к различным внешним воздействиям.

Особое место занимают декоративные композиционные материалы, имеющие выраженные декоративне свойства.

Разрабатываются композитные материалы со специальными свойствами, например радиопрозрачные материалы и радиопоглощающие материалы, материалы для тепловой защиты орбитальных космических аппаратов, материалы с малым коэффициентом линейного термического расширения и высоким удельным модулем упругости и другие.

Композиционные материалы используются во всех областях науки, техники, промышленности, в т.ч. в жилищном, промышленном и специальном строительство, общем и специальном машиностроении, металлургии, химической промышленности, энергетике, электронике, бытовой технике, производстве одежды и обуви, медицине, спорте, искусствах и т.д.

Структура композиционных материалов.

По механической структуре композиты делятся на несколько основных классов: волокнистые, слоистые, дисперсноупрочненные, упрочненные частицами и нанокомпозиты.

Волокнистые композиты армируются волокнами или нитевидными кристаллами. Даже небольшое содержание наполнителя в композитах такого типа приводит к существенному улучшению механических свойств материала. Широко варьировать свойства материала позволяет также изменение ориентации размера и концентрации волокон.

В слоистых композиционных материалах матрица и наполнитель расположены слоями, как, например, в триплексах, фанере, клееных деревянных конструкциях и слоистых пластиках.

Микроструктура остальных классов композиционных материалов характеризуется тем, что матрицу наполняют частицами армирующего вещества, а различаются они размерами частиц. В композитах, упрочненных частицами, их размер больше 1 мкм, а содержание составляет 20-25% (по объему), тогда как дисперсноупрочненные композиты включают в себя от 1 до 15% (по объему) частиц размером от 0,01 до 0,1 мкм. Размеры частиц, входящих в состав нанокомпозитов еще меньше и составляют 10-100 нм.

Некоторые распространеные композиты

Бетоны - самые распространенные композиционные материалы. В настоящее время производится большая номенклатура бетонов, отличающихся по составам и свойствам. Современные бетоны производятся как на традиционных цементных матрицах, так и на полимерных (эпоксидных, полиэфирных, фенолоформальдегидных, акриловых и т.д.). Современные высокоэффективные бетоны по прочности приближаются к металлам. Популярными становятся декоративные бетоны.

Органопластики - композиты, в которых наполнителями служат органические синтетические, реже - природные и искусственные волокна в виде жгутов, нитей, тканей, бумаги и т.д. В термореактивных органопластиках матрицей служат, как правило, эпоксидные, полиэфирные и фенольные смолы, а также полиимиды. Органопластики обладают низкой плотностью, они легче стекло- и углепластиков, обладают относительно высокой прочностью при растяжении; высоким сопротивлением удару и динамическим нагрузкам, но, в то же время, низкой прочностью при сжатии и изгибе. К наиболее распространенным органопластикам относятся древесные композиционные материалы. По объемам производства органопластики превосходят стали, аллюминий и пластмассы.

В зарубежной литературе в последнее время становятся популярными новые термины - биополимеры, биопластики и соответственно - биокомпозиты.

Древесные композиционные материалы. К наиболее распространенным древесным композитам относятся арболиты, ксилолиты, цементностружечные плиты, клееные деревянные конструкции, фанеры и гнутоклееные детали, древесные пластики, древесностружечные и древесноволокнистые плиты и балки, древесные прессмассы и пресспорошки, термопластичные древесно-полимерные композиты.

Стеклопластики - полимерные композиционные материалы, армированные стеклянными волокнами, которые формуют из расплавленного неорганического стекла. В качестве матрицы чаще всего применяют как термореактивные синтетические смолы (фенольные, эпоксидные, полиэфирные и т.д.), так и термопластичные полимеры (полиамиды, полиэтилен, полистирол и т.д.). Стеклопластики обладают высокой прочностью, низкой теплопроводностью, высокими электроизоляционными свойствами, кроме того, они прозрачны для радиоволн. Слоистый материал, в котором в качестве наполнителя применяется ткань, плетенная из стеклянных волокон, называется стеклотекстолитом.

Углепластики - наполнителем в этих полимерных композитах служат углеродные волокна. Углеродные волокна получают из синтетических и природных волокон на основе целлюлозы, сополимеров акрилонитрила, нефтяных и каменноугольных пеков и т.д. Матрицами в угепластиках могут быть как термореактивные, так и термопластичные полимеры. Основными преимуществами углепластиков по сравнению со стеклопластиками является их низкая плотность и более высокий модуль упругости, углепластики - очень легкие и, в то же время, прочные материалы.

На основе углеродных волокон и углеродной матрицы создают композиционные углеграфитовые материалы - наиболее термостойкие композиционные материалы (углеуглепластики), способные долго выдерживать в инертных или восстановительных средах температуры до 3000° С.

Боропластики - композиционные материалы, содержащие в качестве наполнителя борные волокна, внедренные в термореактивную полимерную матрицу, при этом волокна могут быть как в виде мононитей, так и в виде жгутов, оплетенных вспомогательной стеклянной нитью или лент, в которых борные нити переплетены с другими нитями. Применение боропластиков ограничивается высокой стоимостью производства борных волокон, поэтому они используются главным образом в авиационной и космической технике в деталях, подвергающихся длительным нагрузкам в условиях агрессивной среды.

Пресспорошки (прессмассы). Известно более 10000 марок наполненных полимеров. Наполнители используются как для снижения стоимости материала, так и для придания ему специальных свойств. Впервые наполненный полимер начал производить др. Бакеланд (Leo H. Baekeland, США), открывший в начале 20 в. способ синтеза фенолформфльдегидной (бакелитовой) смолы. Сама по себе эта смола - вещество хрупкое, обладающее невысокой прочностью. Бакеланд обнаружил, что добавка волокон, в частности, древесной муки к смоле до ее затвердевания, увеличивает ее прочность. Созданный им материал - бакелит - приобрел большую популярность. Технология его приготовления проста: смесь частично отвержденного полимера и наполнителя - пресс-порошок - под давлением необратимо затвердевает в форме. Первое серийное изделие произведено по данной технологии в 1916, это - ручка переключателя скоростей автомобиля «Роллс-Ройс». Наполненные термореактивные полимеры широко используются в самых разных областях техники. Для наполнения термореактивных и термопластичных полимеров применяются разнообразные наполнители - древесная мука, каолин, мел, тальк, слюда, сажа, стекловолокно, базальтовое волокно и др,

Текстолиты - слоистые пластики, армированные тканями из различных волокон. Технология получения текстолитов была разработана в 1920-х г.г. на основе фенолформальдегидной смолы. Полотна ткани пропитывают смолой, затем прессуют при повышенной температуре, получая текстолитовые пластины или фасонные изделия. Связующими в текстолитах является широкий круг термореактивных и термопластичных полимеров, а иногда и неорганические связующие на основе силикатов и фосфатов. В качестве наполнителя используются ткани из самых разнообразных волокон - хлопковых, синтетических, стеклянных, углеродных, асбестовых, базальтовых и т.д. Соответственно разнообразны свойства и применение текстолитов.

Композиционные материалы с металлической матрицей. При создании композитов на основе металлов в качестве матрицы применяют алюминий, магний, никель, медь и т.д. Наполнителем служат высокопрочные волокна, тугоплавкие частицы различной дисперсности, нитевидными монокристаллы оксида алюминия, оксида бериллия, карбидов бора и кремния, нитридов алюминия и кремния и т.д. длиной 0,3-15 мм и диаметром 1-30 мкм.

Основными преимуществами композиционных материалов с металлической матрицей по сравнению с обычным (неусиленным) металлом являются: повышенная прочность, повышенная жесткость, повышенное сопротивление износу, повышенное сопротивление ползучести.

Композиционные материалы на основе керамики. Армирование керамических материалов волокнами, а также металлическими и керамическими дисперсными частицами позволяет получать высокопрочные композиты, однако, ассортимент волокон, пригодных для армирования керамики, ограничен свойствами исходного материала. Часто используют металлические волокна. Сопротивление растяжению растет незначительно, но зато повышается сопротивление тепловым ударам - материал меньше растрескивается при нагревании, но возможны случаи, когда прочность материала падает. Это зависит от соотношения коэффициентов термического расширения матрицы и наполнителя.

Армирование керамики дисперсными металлическими частицами приводит к новым материалам (керметам) с повышенной стойкостью, устойчивостью относительно тепловых ударов, с повышенной теплопроводностью. Из высокотемпературных керметов делают детали для газовых турбин, арматуру электропечей, детали для ракетной и реактивной техники. Твердые износостойкие керметы используют для изготовления режущих инструментов и деталей. Кроме того, керметы применяют в специальных областях техники - это тепловыделяющие элементы атомных реакторов на основе оксида урана, фрикционные материалы для тормозных устройств и т.д.

Композиционный материал

Композицио́нный материа́л (компози́т, КМ ) - искусственно созданный неоднородный сплошной материал, состоящий из двух или более компонентов с четкой границей раздела между ними. В большинстве композитов (за исключением слоистых) компоненты можно разделить на матрицу и включенные в нее армирующие элементы. В композитах конструкционного назначения армирующие элементы обычно обеспечивают необходимые механические характеристики материала (прочность, жесткость и т.д.), а матрица (или связующее) обеспечивает совместную работу армирующих элементов и защиту их от механических повреждений и агрессивной химической среды.

Механическое поведение композиции определяется соотношением свойств армирующих элементов и матрицы, а также прочностью связи между ними. Эффективность и работоспособность материала зависят от правильного выбора исходных ком­понентов и технологии их совмещения, призванной обеспечить прочную связь между компонентами при сохранении их первоначальных характеристик.

В результате совмещения армирующих элементов и матрицы образуется комплекс свойств композиции, не только отражающий исходные характеристики его компонентов, но и включающий свойства, которыми изолированные компоненты не обладают. В частности, наличие границ раздела между армирующими элементами и матрицей существенно повышает трещиностойкость материала, и в композициях, в отличие от однородных металлов , повышение статической прочности приводит не к снижению, а, как правило, к повышению характеристик вязкости разрушения.

Для создания композиции используются самые разные армирующие наполнители и матрицы. Это - гетинакс и текстолит (слоистые пластики из бумаги или ткани, склеенной термореактивным клеем), стекло- и графитопласт (ткань или намотанное волокно из стекла или графита, пропитанные эпоксидными клеями), фанера … Есть материалы, в которых тонкое волокно из высокопрочных сплавов залито алюминиевой массой. Булат - один из древнейших композиционных материалов. В нем тончайшие слои (иногда нити) высокоуглеродистой стали «склеены» мягким низкоуглеродным железом.

В последнее время материаловеды экспериментируют с целью создать более удобные в производстве, а значит - и более дешёвые материалы. Исследуются саморастущие кристаллические структуры, склеенные в единую массу полимерным клеем (цементы с добавками водорастворимых клеев), композиции из термопласта с короткими армирующими волоконцами и пр.

Классификация композитов

Композиты обычно классифицируются по виду армирующего наполнителя:

  • волокнистые (армирующий компонент - волокнистые структуры);
  • слоистые;
  • наполненные пластики (армирующий компонент - частицы)
    • насыпные (гомогенные),
    • скелетные (начальные структуры, наполненные связующим).

Преимущества композиционных материалов

Главное преимущество КМ в том, что материал и конструкция создается одновременно. Исключением являются препреги , которые являются полуфабрикатом для изготовления конструкций. Стоит сразу оговорить, что КМ создаются под выполнение данных задач, соответственно не могут вмещать в себя все возможные преимущества, но, проектируя новый композит, инженер волен задать ему характеристики значительно превосходящие характеристики традиционных материалов при выполнении данной цели в данном механизме, но уступающие им в каких-либо других аспектах. Это значит, что КМ не может быть лучше традиционного материала во всём, то есть для каждого изделия инженер проводит все необходимые расчёты и только потом выбирает оптимум между материалами для производства.

  • высокая удельная прочность (прочность 3500 МПа)
  • высокая жёсткость (модуль упругости 130…140 - 240 ГПа)
  • высокая износостойкость
  • высокая усталостная прочность
  • из КМ возможно изготовить размеростабильные конструкции
  • легкость

Причём, разные классы композитов могут обладать одним или несколькими преимуществами. Некоторых преимуществ невозможно добиться одновременно.

Недостатки композиционных материалов

Композиционные материалы имеют достаточно большое количество недостатков, которые сдерживают их распространение.

Высокая стоимость

Высокая стоимость КМ обусловлена высокой наукоёмкостью производства, необходимостью применения специального дорогостоящего оборудования и сырья, а следовательно развитого промышленного производства и научной базы страны.

Анизотропия свойств

Низкая ударная вязкость

Высокий удельный объем

Гигроскопичность

КМ могут впитывать также другие жидкости, обладающие высокой проникающей способностью, например, авиационный керосин .

Токсичность

При эксплуатации КМ могут выделять пары, которые часто являются токсичными . Если из КМ изготавливают изделия, которые будут располагаться в непосредственной близости от человека (таким примером может послужить композитный фюзеляж самолета Boeing 787 Dreamliner), то для одобрения применяемых при изготовлении КМ материалов требуются дополнительные исследования воздействия компонентов КМ на человека.

Низкая эксплуатационная технологичность

Композиционные материалы обладают низкой эксплуатационной технологичностью , низкой ремонтопригодностью и высокой стоимостью эксплуатации. Это связано с необходимостью применения специальных трудоемких методов, специальных инструментов для доработки и ремонта объектов из КМ. Часто объекты из КМ вообще не подлежат какой-либо доработке и ремонту.

Области применения

Товары широкого потребления

Характеристика

Технология применяется для формирования на поверхностях в парах трения сталь -резина дополнительных защитных покрытий . Применение технологии позволяет увеличить рабочий цикл уплотнений и валов промышленного оборудования, работающих в водной среде .

Композиционные материалы состоят из нескольких функционально отличных материалов. Основу неорганических материалов составляют модифицированные различными добавками силикаты магния , железа , алюминия . Фазовые переходы в этих материалах происходят при достаточно высоких локальных нагрузках, близких к пределу прочности металла . При этом на поверхности формируется высокопрочный металлокерамический слой в зоне высоких локальных нагрузок, благодаря чему удается изменить структуру поверхности металла.

  • брони для военной техники

Литература

  • Васильев В. В. Механика конструкций из композиционных материалов. - М.: Машиностроение, 1988. - 272 с.
  • Карпинос Д. М. Композиционные материалы. Справочник. - Киев, Наукова думка

См. также

Примечания

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Композиционный материал" в других словарях:

    КОМПОЗИЦИОННЫЙ МАТЕРИАЛ, состав, созданный путем сочетания двух или более других материалов, как, например, бетон, стеклопластик или фанера. Обычно композиционный материал по свойствам превосходит те, из которых он сделан … Научно-технический энциклопедический словарь

    композиционный материал - композит Материал неоднородной структуры, состоящий из нескольких однородных материалов (компонентов). [ПБ 03 576 03] Дополнительная информация в интернете: http://www.xumuk.ru/encyklopedia/2085.html Тематики полимерные и др. материалы Синонимы… … Справочник технического переводчика

    композиционный материал - 3.3 композиционный материал: Материал, содержащий активный резиновый порошок в качестве основы, а также целевые и функциональные добавки, предназначенный для модифицирования асфальтобетонных смесей. Источник … Словарь-справочник терминов нормативно-технической документации


Композитный сайт – это особая технология, представленная компанией «1С-Битрикс». Целью применения данной технологии является ускорение работы сайта. Композитный сайт загружается в несколько раз быстрее, чем обычный сайт на 1С-Битрикс.

Что такое композитный сайт?

По сути, технология «композитный сайт

$this->setFrameMode(true).

$frame = $this->createFrame()->begin();

$frame->end().

Композитный сайт: что такое и зачем он нужен

Композитный сайт – это особая технология, представленная компанией «1С-Битрикс». Целью применения данной технологии является ускорение работы сайта. Композитный сайт загружается в несколько раз быстрее, чем обычный сайт на 1С-Битрикс.

Что такое композитный сайт?


По сути, технология «композитный сайт» – это улучшенная версия технологии html-кэширования сайта. Не секрет, что высокая скорость загрузки способствует лучшему ранжированию веб-ресурса поисковыми системами. Быстрые сайты работают более эффективно. Они удобны для посетителей и ценны для поисковых роботов.

Повысить скорость загрузки сайта стремится каждый веб-мастер. От того, насколько быстро работает ваш сайт, зависит поведение посетителей. Если страницы загружаются легко и за долю секунды, пользователи с удовольствием совершают переходы и просматривают больше информации. Когда посетителям приходится ждать, пока страница загрузится полностью, они начинают нервничать и думать: «А не уйти ли мне на другой сайт?».

Низкая скорость загрузки увеличивает процент отказов и становится причиной плохой конверсии сайта. Ваш потенциальный клиент может отказаться от оформления заказа, если при посещении страницы или при заполнении формы возникнут трудности с загрузкой отдельных элементов страницы. Посетители сайта не смогут просмотреть ваше презентационное видео, если скорость загрузки будет низкой.

Использование технологии композитного сайта позволяет решить проблемы с качеством загрузки страниц.

Как работает композитный сайт?


В html-шаблоне сайта можно выделять области статистического и динамического контента. За счет этого вы обеспечите пользователям мгновенный доступ к определенной информации на страницах. Статический контент – это такая область на странице, которую видят все посетители. Динамический контент показывается в индивидуальном порядке каждому отдельному посетителю. В качестве динамического контента может использоваться форма авторизации, корзина, баннеры и т.п.

При использовании композитного сайта статический контент загружается мгновенно. Посетитель сайта сразу видит содержимое статической области и может изучать его и выполнять другие необходимые действия. Динамическая область подгружается постепенно в фоновом режиме и кэшируется в браузере.

Как запустить технологию композитного сайта?


Для начала проверьте, какая версия 1С-Битрикс используется на вашем сайте. Технология композитного сайта доступна для версии 14.5 и выше. При наличии более ранней версии вам потребуется обновить программу до актуальной или приобрести продление.

Зайдите в раздел «Настройка продукта». Там вы увидите пункт «Композитный сайт». Чтобы данная технология заработала на вашем сайте, недостаточно ее просто включить. Для этого вам потребуется подогнать отдельные страницы под «композитный сайт». Каждый элемент шаблона страницы должен быть адаптирован к применению технологии. Если хоть один компонент не будет настроен под «композитный сайт», то технология не будет работать на всей странице.

Для настройки статической области на странице необходимо добавить в шаблон строку следующего вида:

$this->setFrameMode(true).

Для выделения динамических областей используйте:

$frame = $this->createFrame()->begin();
$frame->end().


Стоит отметить, что обновление динамического контента происходит с высокой скоростью. Пользователи практически не замечают, как подгружается динамическая область. Вся страница загружается намного быстрее, чем при использовании привычного способа отображения информации.

Используя технологию композитного сайта можно увеличить скорость загрузки страниц и обеспечить улучшение поведенческих факторов. На перевод ресурса в композитный режим потребуется совсем немного времени. Эффект же от применения данной технологии будет заметен уже в первые дни работы обновленного сайта.

Знакомит читателя с композитами на основе металлов и керамическими композитными материалами. Также в ней рассказывается об основных видах применения композитов.

  • Органопластики с органическими волокнами естественного и искусственного происхождения. Легче, чем стекло- и углепластики. Отличаются высокой прочностью на удар, но низкой - на растяжение/изгиб. К пластикам этого типа относится, например, кевлар.
  • Текстолиты, изготовленные из матрицы из полимера и тканей различной природы в качестве наполнителя. Некоторые текстолиты изготавливаются с матрицей из неорганических веществ (силикатов, фосфатов). Свойства материалов очень разнообразны, зависят от вида волокон ткани. Волокна производят из хлопка, асбеста, базальта, стекла, искусственных материалов и пр.
  • Полимеры с порошковым заполнением (полиэтилены, полипропилены, смолы с различными наполнителями, например, тальком, крахмалом, сажей, карбонатом кальция и пр.) - разработано уже более 10 тыс. видов пластиков этого типа. Обратите внимание, что у нас можно купить различные наполнители и другое необходимое сырье для изготовления композитов.

Композиты на основе металлов

Металлокомпозиты изготавливают на основе многих цветных металлов, например, меди, алюминия, никеля. Для наполнения берутся волокна, устойчивые к высоким температурам, не растворяющиеся в основе. Чаще всего используются металлические волокна или монокристаллы из оксидов, нитридов, керамики, карбидов, боридов. Благодаря этому получаются композиты, гораздо более огнестойкие, прочные и износоустойчивые, чем исходный чистый металл.

Керамические композиты

Керамические композиты изготавливают методом спекания под давлением исходной керамической массы с добавлением волокон или частиц. В качестве наполнителей чаще всего применяются металлические волокна - получаются керметы. Они отличаются устойчивостью к тепловому удару, высокой теплопроводностью.

Керметы используются для производства износоустойчивых и термостойких деталей, например, газовых турбин, электропечей. Также они востребованы для изготовления режущего инструмента, деталей тормозных систем, тепловыделяющих стержней для атомных реакторов.

Применение композитов

Композитные материалы уже сейчас используются практически во всех областях производства. Их применяют:

  • в строительстве;
  • производстве безопасных и бронированных стекол для транспортных средств, витрин и дверей;
  • медицинских протезов;
  • покрытий для кухонных столов и основы для электронных плат;
  • деталей и корпусов бытовых приборов;
  • оконных рам и многого другого.

Это интересно: композиты с экстремальными свойствами востребованы в самолето-, авто-, судо- и ракетостроении. Они нужны при производстве деталей для космических аппаратов, атомных станций, спортивного инвентаря (например, легких и прочных велосипедов). Применяются для изготовления элементов приборов и оборудования, эксплуатирующихся в агрессивных средах и при высоких температурах.