» »

Чем является ось у для параболы. Уравнение по трем точкам: как найти вершину параболы, формула

10.10.2019

Параболой называется геометрическое место точек плоскости, равноудаленных от заданной точки F и заданной прямой d , не проходящей через заданную точку. Это геометрическое определение выражает директориальное свойство параболы .

Директориальное свойство параболы

Точка F называется фокусом параболы, прямая d - директрисой параболы, середина O перпендикуляра, опущенного из фокуса на директрису, - вершиной параболы, расстояние p от фокуса до директрисы - параметром параболы, а расстояние \frac{p}{2} от вершины параболы до её фокуса - фокусным расстоянием (рис.3.45,а). Прямая, перпендикулярная директрисе и проходящая через фокус, называется осью параболы (фокальной осью параболы). Отрезок FM , соединяющий произвольную точку M параболы с её фокусом, называется фокальным радиусом точки M . Отрезок, соединяющий две точки параболы, называется хордой параболы.


Для произвольной точки параболы отношение расстояния до фокуса к расстоянию до директрисы равно единице. Сравнивая директориальные свойства , и параболы, заключаем, что эксцентриситет параболы по определению равен единице (e=1) .


Геометрическое определение параболы , выражающее её директориальное свойство, эквивалентно её аналитическому определению - линии, задаваемой каноническим уравнением параболы:



Действительно, введем прямоугольную систему координат (рис.3.45,б). Вершину O параболы примем за начало системы координат; прямую, проходящую через фокус перпендикулярно директрисе, примем за ось абсцисс (положительное направление на ней от точки O к точке F ); прямую, перпендикулярную оси абсцисс и проходящую через вершину параболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).



Составим уравнение параболы, используя её геометрическое определение, выражающее директориальное свойство параболы. В выбранной системе координат определяем координаты фокуса F\!\left(\frac{p}{2};\,0\right) и уравнение директрисы x=-\frac{p}{2} . Для произвольной точки M(x,y) , принадлежащей параболе, имеем:


FM=MM_d,


где M_d\!\left(\frac{p}{2};\,y\right) - ортогональная проекция точки M(x,y) на директрису. Записываем это уравнение в координатной форме:


\sqrt{{\left(x-\frac{p}{2}\right)\!}^2+y^2}=x+\frac{p}{2}.


Возводим обе части уравнения в квадрат: {\left(x-\frac{p}{2}\right)\!}^2+y^2=x^2+px+\frac{p^2}{4} . Приводя подобные члены, получаем каноническое уравнение параболы


y^2=2\cdot p\cdot x, т.е. выбранная система координат является канонической.


Проводя рассуждения в обратном порядке, можно показать, что все точки, координаты которых удовлетворяют уравнению (3.51), и только они, принадлежат геометрическому месту точек, называемому параболой. Таким образом, аналитическое определение параболы эквивалентно его геометрическому определению, выражающему директориальное свойство параболы.

Уравнение параболы в полярной системе координат

Уравнение параболы в полярной системе координат Fr\varphi (рис.3.45,в) имеет вид


r=\frac{p}{1-e\cdot\cos\varphi}, где p - параметр параболы, а e=1 - её эксцентриситет.


В самом деле, в качестве полюса полярной системы координат выберем фокус F параболы, а в качестве полярной оси - луч с началом в точке F , перпендикулярный директрисе и не пересекающий её (рис.3.45,в). Тогда для произвольной точки M(r,\varphi) , принадлежащей параболе, согласно геометрическому определению (директориальному свойству) параболы, имеем MM_d=r . Поскольку MM_d=p+r\cos\varphi , получаем уравнение параболы в координатной форме:


p+r\cdot\cos\varphi \quad \Leftrightarrow \quad r=\frac{p}{1-\cos\varphi},


что и требовалось доказать. Заметим, что в полярных координатах уравнения эллипса, гиперболы и параболы совпадают, но описывают разные линии, поскольку отличаются эксцентриситетами (0\leqslant e<1 для , e=1 для параболы, e>1 для ).

Геометрический смысл параметра в уравнении параболы

Поясним геометрический смысл параметра p в каноническом уравнении параболы. Подставляя в уравнение (3.51) x=\frac{p}{2} , получаем y^2=p^2 , т.е. y=\pm p . Следовательно, параметр p - это половина длины хорды параболы, проходящей через её фокус перпендикулярно оси параболы.


Фокальным параметром параболы , так же как для эллипса и для гиперболы, называется половина длины хорды, проходящей через её фокус перпендикулярно фокальной оси (см. рис.3.45,в). Из уравнения параболы в полярных координатах при \varphi=\frac{\pi}{2} получаем r=p , т.е. параметр параболы совпадает с её фокальным параметром.

Замечания 3.11.


1. Параметр p параболы характеризует её форму. Чем больше p , тем шире ветви параболы, чем ближе p к нулю, тем ветви параболы уже (рис.3.46).


2. Уравнение y^2=-2px (при p>0 ) определяет параболу, которая расположена слева от оси ординат (рис. 3.47,a). Это уравнение сводится к каноническому при помощи изменения направления оси абсцисс (3.37). На рис. 3.47,a изображены заданная система координат Oxy и каноническая Ox"y" .


3. Уравнение (y-y_0)^2=2p(x-x_0),\,p>0 определяет параболу с вершиной O"(x_0,y_0) , ось которой параллельна оси абсцисс (рис.3.47,6). Это уравнение сводится к каноническому при помощи параллельного переноса (3.36).


Уравнение (x-x_0)^2=2p(y-y_0),\,p>0 , также определяет параболу с вершиной O"(x_0,y_0) , ось которой параллельна оси ординат (рис.3.47,в). Это уравнение сводится к каноническому при помощи параллельного переноса (3.36) и переименования координатных осей (3.38). На рис. 3.47,б,в изображены заданные системы координат Oxy и канонические системы координат Ox"y" .



4. y=ax^2+bx+c,~a\ne0 является параболой с вершиной в точке O"\!\left(-\frac{b}{2a};\,-\frac{b^2-4ac}{4a}\right) , ось которой параллельна оси ординат, ветви параболы направлены вверх (при a>0 ) или вниз (при a<0 ). Действительно, выделяя полный квадрат, получаем уравнение


y=a\left(x+\frac{b}{2a}\right)^2-\frac{b^2}{4a}+c \quad \Leftrightarrow \quad \!\left(x+\frac{b}{2a}\right)^2=\frac{1}{a}\left(y+\frac{b^2-4ac}{4a}\right)\!,


которое приводится к каноническому виду (y")^2=2px" , где p=\left|\frac{1}{2a}\right| , при помощи замены y"=x+\frac{b}{2a} и x"=\pm\!\left(y+\frac{b^2-4ac}{4a}\right) .


Знак выбирается совпадающим со знаком старшего коэффициента a . Эта замена соответствует композиции: параллельного переноса (3.36) с x_0=-\frac{b}{2a} и y_0=-\frac{b^2-4ac}{4a} , переименования координатных осей (3.38), а в случае a<0 еще и изменения направления координатной оси (3.37). На рис.3.48,а,б изображены заданные системы координат Oxy и канонические системы координат O"x"y" для случаев a>0 и a<0 соответственно.


5. Ось абсцисс канонической системы координат является осью симметрии параболы , поскольку замена переменной y на -y не изменяет уравнения (3.51). Другими словами, координаты точки M(x,y) , принадлежащей параболе, и координаты точки M"(x,-y) , симметричной точке M относительно оси абсцисс, удовлетворяют уравнению (3.S1). Оси канонической системы координат называются главными осями параболы .

Пример 3.22. Изобразить параболу y^2=2x в канонической системе координат Oxy . Найти фокальный параметр, координаты фокуса и уравнение директрисы.


Решение. Строим параболу, учитывая её симметрию относительно оси абсцисс (рис.3.49). При необходимости определяем координаты некоторых точек параболы. Например, подставляя x=2 в уравнение параболы, получаем y^2=4~\Leftrightarrow~y=\pm2 . Следовательно, точки с координатами (2;2),\,(2;-2) принадлежат параболе.


Сравнивая заданное уравнение с каноническим (3.S1), определяем фокальный параметр: p=1 . Координаты фокуса x_F=\frac{p}{2}=\frac{1}{2},~y_F=0 , т.е. F\!\left(\frac{1}{2},\,0\right) . Составляем уравнение директрисы x=-\frac{p}{2} , т.е. x=-\frac{1}{2} .

Общие свойства эллипса, гиперболы, параболы

1. Директориальное свойство может быть использовано как единое определение эллипса, гиперболы, параболы (см. рис.3.50): геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e , называется:


а) , если 0\leqslant e<1 ;

б) , если e>1 ;

в) параболой , если e=1 .


2. Эллипс, гипербола, парабола получаются в сечениях кругового конуса плоскостями и поэтому называются коническими сечениями . Это свойство также может служить геометрическим определением эллипса, гиперболы, параболы.


3. К числу общих свойств эллипса, гиперболы и параболы можно отнести биссекториальное свойство их касательных. Под касательной к линии в некоторой её точке K понимается предельное положение секущей KM , когда точка M , оставаясь на рассматриваемой линии, стремится к точке K . Прямая, перпендикулярная касательной к линии и проходящая через точку касания, называется нормалью к этой линии.


Биссекториальное свойство касательных (и нормалей) к эллипсу, гиперболе и параболе формулируется следующим образом: касательная (нормаль) к эллипсу или к гиперболе образует равные углы с фокальными радиусами точки касания (рис.3.51,а,б); касательная (нормаль) к параболе образует равные углы с фокальным радиусом точки касания и перпендикуляром, опущенным из нее на директрису (рис.3.51,в). Другими словами, касательная к эллипсу в точке K является биссектрисой внешнего угла треугольника F_1KF_2 (а нормаль - биссектрисой внутреннего угла F_1KF_2 треугольника); касательная к гиперболе является биссектрисой внутреннего угла треугольника F_1KF_2 (а нормаль - биссектрисой внешнего угла); касательная к параболе является биссектрисой внутреннего угла треугольника FKK_d (а нормаль - биссектрисой внешнего угла). Биссекториальное свойство касательной к параболе можно сформулировать так же, как для эллипса и гиперболы, если считать, что у параболы имеется второй фокус в бесконечно удаленной точке.



4. Из биссекториальных свойств следуют оптические свойства эллипса, гиперболы и параболы , поясняющие физический смысл термина "фокус". Представим себе поверхности, образованные вращением эллипса, гиперболы или параболы вокруг фокальной оси. Если на эти поверхности нанести отражающее покрытие, то получаются эллиптическое, гиперболическое и параболическое зеркала. Согласно закону оптики, угол падения луча света на зеркало равен углу отражения, т.е. падающий и отраженный лучи образуют равные углы с нормалью к поверхности, причем оба луча и ось вращения находятся в одной плоскости. Отсюда получаем следующие свойства:


– если источник света находится в одном из фокусов эллиптического зеркала, то лучи света, отразившись от зеркала, собираются в другом фокусе (рис.3.52,а);

– если источник света находится в одном из фокусов гиперболического зеркала, то лучи света, отразившись от зеркала, расходятся так, как если бы они исходили из другого фокуса (рис.3.52,б);

– если источник света находится в фокусе параболического зеркала, то лучи света, отразившись от зеркала, идут параллельно фокальной оси (рис.3.52,в).



5. Диаметральное свойство эллипса, гиперболы и параболы можно сформулировать следующим образом:


середины параллельных хорд эллипса (гиперболы) лежат на одной прямой, проходящей через центр эллипса (гиперболы) ;

середины параллельных хорд параболы лежат на прямой, коллинеарной оси симметрии параболы .


Геометрическое место середин всех параллельных хорд эллипса (гиперболы, параболы) называют диаметром эллипса (гиперболы, параболы) , сопряженным к этим хордам.


Это определение диаметра в узком смысле (см. пример 2.8). Ранее было дано определение диаметра в широком смысле, где диаметром эллипса, гиперболы, параболы, а также других линий второго порядка называется прямая, содержащая середины всех параллельных хорд. В узком смысле диаметром эллипса является любая хорда, проходящая через его центр (рис.3.53,а); диаметром гиперболы является любая прямая, проходящая через центр гиперболы (за исключением асимптот), либо часть такой прямой (рис.3.53,6); диаметром параболы является любой луч, исходящий из некоторой точки параболы и коллинеарный оси симметрии (рис.3.53,в).


Два диаметра, каждый их которых делит пополам все хорды, параллельные другому диаметру, называются сопряженными. На рис.3.53 полужирными линиями изображены сопряженные диаметры эллипса, гиперболы, параболы.



Касательную к эллипсу (гиперболе, параболе) в точке K можно определить как предельное положение параллельных секущих M_1M_2 , когда точки M_1 и M_2 , оставаясь на рассматриваемой линии, стремятся к точке K . Из этого определения следует, что касательная, параллельная хордам, проходит через конец диаметра, сопряженного к этим хордам.


6. Эллипс, гипербола и парабола имеют, кроме приведенных выше, многочисленные геометрические свойства и физические приложения. Например, рис.3.50 может служить иллюстрацией траекторий движения космических объектов, находящихся в окрестности центра F притяжения.

Определение 1. Параболой называется множество всех точек плоскости, каждая из которых одинаково удалена от данной точки, называемой фокусом, и от данной прямой, не проходящей через данную точку и называемой директрисой.

Составим уравнение параболы с фокусом в данной точке F и директрисой которой является прямая d, не проходящая через F. Выберем прямоугольную систему координат следующим образом: ось Ох проведем через фокус F перпендикулярно директрисе d в направлении от d к F, а начало координат О расположим посередине между фокусом и директрисой (рис. 1).

Определение 2. Расстояние от фокуса F до директрисы d называется параметром параболы и обозначается через р (р > 0).

Из рис. 1 видно, что p = FK, следовательно, фокус имеет координаты F (р/2; 0) , а уравнение директрисы имеет вид х = – р/2, или

Пусть М(х; у) – произвольная точка параболы. Соединим точку М с F ипроведем MN d. Непосредственно из рис. 1 видно, что

а по формуле расстояния между двумя точками

Согласно определению параболы, MF = MN, (1)

следовательно, (2)

Уравнение (2) является искомым уравнением параболы. Для упрощения уравнения (2) преобразуем его следующим образом:

т.е.,

Координаты х и у точки М параболы удовлетворяют условию (1), а следовательно, и уравнению (3).

Определение 3. Уравнение (3) называется каноническим уравнением параболы.

2. Исследование формы параболы по ее уравнению. Определим форму параболы по ее каноническому уравнению (3).

1) Координаты точки О (0; 0) удовлетворяют уравнению (3), следовательно, парабола, определяемая этим уравнением, проходит через начало координат.

2) Так как в уравнение (3) переменная у входит только в четной степени, то парабола у 2 = 2рх симметрична относительно оси абсцисс.

3) Так как р > 0 , то из (3) следует х ≥ 0. Следовательно, парабола у 2 = 2рх расположена справа от оси Оу .

4) При возрастании абсциссы х от 0 до +∞ ордината у изменяется от 0 до ± ∞, т.е. точки параболы неограниченно удаляются как от оси Ох , так и от оси Оу .

Парабола у 2 = 2рх имеет форму, изображенную на рис. 2.

Определение 4. Ось Ох называется осью симметрии параболы . Точка О (0; 0) пересечения параболы с осью симметрии называется вершиной параболы . Отрезок FM называется фокальным радиусом точки М .

Замечание. Для составления уравнения параболы вида у 2 = 2рх мы специальным образом выбрали прямоугольную систему координат (см. п. 1). Если же систему координат выбрать другим образом, то и уравнение параболы будет иметь иной вид.



а


Так, например, если направить ось Ох от фокуса к директрисе (рис. 3, а

у 2 = –2рх. (4)

F(–р/2; 0) , а директриса d задана уравнением х = р/2.

Если ось Оу проведем через фокус F d в направлении от d к F , а начало координат О расположим посередине между фокусом и директрисой (рис. 3, б ), то уравнение параболы пример вид

х 2 = 2ру. (5)

Фокус такой параболы имеет координаты F (0; р/2) , а директриса d задана уравнением у=–р/2.

Если ось Оу проведем через фокус F перпендикулярно к директрисе d в направлении от F к d (рис. 3, в ), то уравнение параболы примет вид

х 2 = –2ру (6)

Координаты ее фокуса будут F (0; –р/2) , а уравнением директрисы d будет у = р/2.

Об уравнения (4), (5), (6) говорят, что они имеют простейший вид.

3. Параллельный перенос параболы. Пусть дана парабола с вершиной в точке О" (а; b) , ось симметрии которой параллельна оси Оу , а ветви направлены вверх (рис. 4). Требуется составить уравнение параболы.

(9)

Определение 5. Уравнение (9) называется уравнением параболы со смещенной вершиной.

Преобразуем это уравнение следующим образом:

Положив

будем иметь (10)

Нетрудно показать, что для любых А, В, С график квадратного трехчлена (10) представляет собой параболу в смысле определения 1. Уравнение параболы вида (10) изучалось в школьном курсе алгебре.


УПРАЖНЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

№1. Составить уравнение окружности:

a. с центром в начале координат и радиусом 7;

b. с центром в точке (-1;4) и радиусом 2.

Построить данные окружности в прямоугольной декартовой системе координат.

№2. Составить каноническое уравнение эллипса с вершинами

и фокусами

№3. Построить эллипс, заданный каноническим уравнением:

1) 2)

№4. Составить каноническое уравнение эллипса с вершинами



и фокусами

№5. Составить каноническое уравнение гиперболы с вершинами

и фокусами

№6. Составить каноническое уравнение гиперболы, если:

1. расстояние между фокусами , а между вершинами

2. действительная полуось , а эксцентриситет ;

3. фокусы на оси , действительная ось 12, а мнимая 8.

№7. Построить гиперболу, заданную каноническим уравнением:

1) 2) .

№8. Составить каноническое уравнение параболы, если:

1) парабола расположена в правой полуплоскости симметрично относительно оси и её параметр ;

2) парабола расположена в левой полуплоскости симметрично относительно оси и её параметр .

Построить эти параболы, их фокусы и директрисы.

№9. Определить тип линии, если её уравнение:


ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

1. Векторы в пространстве.

1.1. Что такое вектор?

1.2. Что такое абсолютная величина вектора?

1.3. Какие виды векторов в пространстве Вы знаете?

1.4. Какие действия можно выполнять с ними?

1.5. Что такое координаты вектора? Как их найти?

2. Действия над векторами, заданными своими координатами.

2.1. Какие действия можно выполнять с векторами, заданными в координатной форме (правила, равенства, примеры); как найти абсолютную величину такого вектора.

2.2. Свойства:

2.2.1 коллинеарных;

2.2.2 перпендикулярных;

2.2.3 компланарных;

2.2.4 равных векторов.
(формулировки, равенства).

3. Уравнение прямой. Прикладные задачи.

3.1. Какие виды уравнения прямой Вы знаете (уметь записывать и интерпретировать по записи);

3.2. Как исследовать на параллельность – перпендикулярность две прямые, заданные уравнениями с угловым коэффициентом или общими уравнениями?

3.3. Как найти расстояние от точки до прямой, между двумя точками?

3.4. Как найти угол между прямыми, заданными общими уравнениями прямой или уравнениями с угловым коэффициентом?

3.5. Как найти координаты середины отрезка и длину этого отрезка?

4. Уравнение плоскости. Прикладные задачи.

4.1. Какие виды уравнения плоскости Вы знаете (уметь записывать и интерпретировать по записи)?

4.2. Как исследовать на параллельность – перпендикулярность прямые в пространстве?

4.3. Как найти расстояние от точки до плоскости и угол между плоскостям?.

4.4. Как исследовать взаимное расположение прямой и плоскости в пространстве?

4.5. Виды уравнения прямой в пространстве: общее, каноническое, параметрическое, проходящей через две данные точки.

4.6. Как найти угол между прямыми и расстояние между точками в пространстве?

5. Линии второго порядка.

5.1. Эллипс: определение, фокусы, вершины, большая и малая оси, фокальные радиусы, эксцентриситет, уравнения директрис, простейшие (или канонические) уравнения эллипса; чертеж.

5.2. Гипербола: определение, фокусы, вершины, действительная и мнимая оси, фокальные радиусы, эксцентриситет, уравнения директрис, простейшие (или канонические) уравнения гиперболы; чертеж.

5.3. Парабола: определение, фокус, директриса, вершина, параметр, ось симметрии, простейшие (или канонические) уравнения параболы; чертеж.

Примечание к 4.1, 4.2, 4.3: Для каждой линии 2го порядка уметь описывать построение.


ЗАДАНИЯ ДЛЯ САМОПРОВЕРКИ

1.Даны точки: , где N – номер студента по списку.

3) найти расстояние от точки М до плоскости Р.

4. Построить линию второго порядка, заданную своим каноническим уравнением:

.


ЛИТЕРАТУРА

1. Высшая математика для экономистов - Учебник для вузов под ред. Н.Ш. Кремер и др., - Москва, ЮНИТИ, 2003.

2. Барковський В.В., Барковська Н.В. - Вища математика для економістів – Київ, ЦУЛ, 2002.

3. Суворов И.Ф. - Курс высшей математики. - М., Высшая школа, 1967.

4. Тарасов Н.П. - Курс высшей математики для техникумов. - М.; Наука, 1969.

5. Зайцев И.Л. - Элементы высшей математики для техникумов. - М.; Наука, 1965.

6. Валуцэ Н.Н., Дилигул Г.Д. - Математика для техникумов. - М.; Наука, 1990.

7. Шипачев В.С. - Высшая математика. Учебник для вузов – М.: Высшая школа, 2003.

Введем прямоугольную систему координат, где . Пусть осьпроходит через фокусF параболы и перпендикулярен директрисе, а ось проходит посередине между фокусом и директрисой. Обозначим черезрасстояние между фокусом и директрисой. Тогдаа уравнение директрисы.

Число– называетсяфокальным параметромпараболы. Пусть – текущая точка параболы. Пусть– фокальный радиус точки гиперболы.–расстояние от точки до директрисы. Тогда(чертеж 27 .)

Чертеж 27.

По определению параболы . Следовательно,

Возведем уравнение в квадрат, получим:

(15)

где (15) каноническое уравнение параболы, симметричной относительно оси и проходящей через начало координат.

Исследование свойств параболы

1) Вершина параболы:

Уравнению (15) удовлетворяют числа и, следовательно, парабола проходит через начало координат.

2) Симметрия параболы:

Пусть принадлежит параболе, т.е.верное равенство. Точкасимметрична точкеотносительно оси, следовательно, парабола симметрична относительно оси абсцисс.

    Эксцентриситет параболы:

Определение 4.2. Эксцентриситетом параболы называется число , равное единице.

Так как по определению параболы .

4) Касательная параболы:

Касательная к параболе в точке касания определяется уравнением

Где (чертеж 28. )

Чертеж 28.

Изображение параболы

Чертеж 29.

    С использованием ЭСО- Mathcad:

чертеж 30 .)

Чертеж 30 .

a) Построение без использования ИКТ: Для построения параболы задаем прямоугольную систему координат с центром в точке О и единичный отрезок. Отмечаем на оси ОХ фокус ,так как, проводимтакую, что, и директрису параболы. Выполняем построение окружности в точкеи радиусом равным расстоянию от прямойдо директрисы параболы. Окружность пересекает прямуюв точкахи. Строим параболу так, чтобы она проходила через начало координат и через точкии.(чертеж 31 .)

Чертеж 31.

b)С использованием ЭСО- Mathcad:

Полученное уравнение имеет вид: . Для построения линии второго порядка в программеMathcad приводим уравнение к виду: .(чертеж 32 .)

Чертеж 32.

Чтобы обобщить работу по теории линий второго порядка в элементарной математике и для удобства использования информации о линиях при решении задач, заключим все данные о линиях второго порядка в таблицу № 1.

Таблица №1.

Линии второго порядка в элементарной математике

Название линии 2-го порядка

Окружность

Эллипс

Гипербола

Парабола

Характеристические свойства

Уравнение линии

Эксцентриситет

Уравнение касательной в точке (x 0 ; y 0 )

Фокус

Диаметры линий

Где k- угловой коэффициент

Где k угловой коэффициент

Где k угловой коэффициент

        Возможности использования ИКТ в изучении линий второго порядка

Процесс информатизации, охвативший сегодня все стороны жизни современного общества, имеет несколько приоритетных направлений, к которым, безусловно, следует отнести информатизацию образования. Она является первоосновой глобальной рационализации интеллектуальной деятельности человека за счет использования информационно-коммуникационных технологий (ИКТ).

Середина 90-х годов прошлого века и до сегодняшнего дня, характеризуется массовостью и доступностью персональных компьютеров в России, широким использованием телекоммуникаций, что позволяет внедрять разрабатываемые информационные технологии обучения в образовательный процесс, совершенствуя и модернизируя его, улучшая качество знаний, повышая мотивацию к обучению, максимально используя принцип индивидуализации обучения. Информационные технологии обучения являются необходимым инструментом на данном этапе информатизации образования.

Информационные технологии не только облегчают доступ к информации и открывают возможности вариативности учебной деятельности, ее индивидуализации и дифференциации, но и позволяют по-новому организовать взаимодействие всех субъектов обучения, построить образовательную систему, в которой ученик был бы активным и равноправным участником образовательной деятельности.

Формирование новых информационных технологий в рамках предметных уроков стимулируют потребность в создании новых программно-методических комплексов направленных на качественное повышение эффективности урока. Поэтому, для успешного и целенаправленного использования в учебном процессе средств информационных технологий, преподаватели должны знать общее описание принципов функционирования и дидактические возможности программно- прикладных средств, а затем, исходя из своего опыта и рекомендаций, "встраивать" их в учебный процесс.

Изучение математики в настоящее время сопряжено с целым рядом особенностей и трудностей развития школьного образования в нашей стране.

Появился так называемый кризис математического образования. Причины его состоят в следующем:

В изменении приоритетов в обществе и в науке, то есть в настоящее время идет рост приоритета гуманитарных наук;

В сокращении количества уроков математики в школе;

В оторванности содержания математического образования от жизни;

В малом воздействии на чувства и эмоции учащихся.

Сегодня остается открытым вопрос: «Как же наиболее эффективно использовать потенциальные возможности современных информационных и коммуникационных технологий при обучении школьников, в том числе, при обучении математике?».

Компьютер – отличный помощник в изучении такой темы, как “Квадратичная функция”, потому что, используя специальные программы можно строить графики различных функций, исследовать функцию, легко определить координаты точек пересечения, вычислить площади замкнутых фигур и т.д. Например, на уроке алгебры в 9-м классе, посвящённом преобразованию графика (растяжения, сжатия, переносы координатных осей) можно увидеть лишь застывший результат построения, а на экране монитора прослеживается вся динамика последовательных действий учителя и ученика.

Компьютер, как ни одно техническое средство, точно, наглядно и увлекательно открывает перед учеником идеальные математические модели, т.е. то, к чему должен стремиться ребенок в своих практических действиях.

Сколько трудностей приходится испытывать учителю математики для того, чтобы убедить учеников в том, что касательная к графику квадратичной функции в точке касания практически сливается с графиком функции. На компьютере этот факт продемонстрировать очень просто- достаточно сузить интервал по оси Ох и обнаружить, что в очень маленькой окрестности точки касания график функции и касательная совпадают. Все эти действия происходят на глазах у учеников. Этот пример дает толчок к активным размышлениям на уроке. Использование компьютера возможно как в ходе объяснения нового материала на уроке, так и на этапе контроля. При помощи этих программ, например «My Test», ученик самостоятельно может проверить свой уровень знаний по теории, выполнить теоретико-практические задания. Программы удобны своей универсальностью. Они могут быть использованы и для самоконтроля, и для контроля со стороны учителя.

Разумная интеграция математики и компьютерных технологий позволит богаче и глубже взглянуть на процесс решения задачи, ход осмысления математических закономерностей. Кроме того, компьютер поможет сформировать графическую, математическую и мыслительную культуру учеников, а также с помощью компьютера можно подготовить дидактические материалы: карточки, листы опроса, тесты и др. При этом давать возможность ребятам самостоятельно разрабатывать тесты по теме, в ходе чего развивается интерес и творческий подход.

Таким образом, есть необходимость в применении по возможности компьютера на уроках математики более широко, чем есть. Использование информационных технологий будет способствовать повышению качества знаний, расширит горизонты изучения квадратичной функции, а значит, поможет найти новые перспективы для поддержания интереса учащихся к предмету и к теме, а значит и к лучшему, более внимательному отношению к нему. Сегодня современные информационные технологии становятся важнейшим инструментом модернизации школы в целом – от управления до воспитания и обеспечения доступности образования.

Лекции по алгебре и геометрии. Семестр 1.

Лекция 17. Парабола.

Глава 17. Парабола.

п.1. Основные определения.

Определение. Параболой называется ГМТ плоскости равноудаленных от одной фиксированной точки плоскости, называемой фокусом, и одной фиксированной прямой, называемой директрисой.

Определение. Расстояние от произвольной точки М плоскости до фокуса параболы называется фокальным радиусом точки М.

Обозначения: F– фокус параболы,r– фокальный радиус точки М,d– расстояние от точки М до директрисыD.

По определению параболы, точка М является точкой параболы тогда и только тогда, когда
.

По определению параболы, его фокус и директриса есть фиксированные объекты, поэтому расстояние от фокуса до директрисы есть величина постоянная для данной параболы.

Определение. Расстояние от фокуса параболы до ее директрисы называется фокальным параметром параболы.

Обозначение:
.

Введем на данной плоскости систему координат, которую мы будем называть канонической для параболы.

Определение. Ось, проведенная через фокус параболы перпендикулярно директрисе называется фокальной осью параболы.

Построим каноническую для параболы ПДСК, см. рис.2.

В качестве оси абсцисс выбираем фокальную ось, направление на которой выбираем от директрисы к фокусу.

Ось ординат проводим через середину отрезка FNперпендикулярно фокальной оси. Тогда фокус имеет координаты
.

п.2. Каноническое уравнение параболы.

Теорема. В канонической для параболы системе координат уравнение параболы имеет вид:

. (1)

Доказательство. Доказательство проведем в два этапа. На первом этапе мы докажем, что координаты любой точки, лежащей на параболе удовлетворяют уравнению (1). На втором этапе мы докажем, что любое решение уравнения (1) дает координаты точки, лежащей на параболе. Отсюда будет следовать, что уравнению (1) удовлетворяют координаты тех и только тех точек координатной плоскости, которые лежат на параболе.

Отсюда и из определения уравнения кривой будет следовать, что уравнение (1) является уравнением параболы.

1) Пусть точка М(х, у) является точкой параболы, т.е.

.

Воспользуемся формулой расстояния между двумя точками на координатной плоскости и найдем по этой формуле фокальный радиус данной точки М:

.

Из рисунка 2 мы видим, что точка параболы не может иметь отрицательной абсциссы, т.к. в этом случае
. Поэтому
и
. Отсюда получаем равенство

.

Возведем обе части равенства в квадрат:

и после сокращения получаем:

.

2) Пусть теперь пара чисел (х, у) удовлетворяет уравнению (1) и пусть М(х, у) – соответствующая точка на координатной плоскости Оху.

Тогда подставляем равенство (1) в выражение для фокального радиуса точки М:

, откуда, по определению параболы, следует, что точка М(х, у) лежит на параболе.

Здесь мы воспользовались тем, что из равенства (1) следует, что
и, следовательно,
.

Теорема доказана.

Определение. Уравнение (1) называется каноническим уравнением параболы.

Определение. Начало канонической для параболы системы координат называется вершиной параболы.

п.3. Свойства параболы.

Теорема. (Свойства параболы.)

1. В канонической для параболы системе координат, в полосе

нет точек параболы.

2. В канонической для параболы системе координат вершина параболы О(0; 0) лежит на параболе.

3. Парабола является кривой, симметричной относительно фокальной оси.

Доказательство. 1, 2) Сразу же следует из канонического уравнения параболы.

3) Пусть М(х, у) – произвольная точка параболы. Тогда ее координаты удовлетворяют уравнению (1). Но тогда координаты точки
также удовлетворяют уравнению (1), и, следовательно, эта точка также является точкой параболы, откуда и следует утверждение теоремы.

Теорема доказана.

п.4. Построение параболы.

В силу симметрии достаточно построить параболу в первой четверти, где она является графиком функции

,

а затем отобразить полученный график симметрично относительно оси абсцисс.

Строим график этой функции, учитывая, что данная функция является возрастающей на промежутке
.

п.5. Фокальный параметр гиперболы.

Теорема. Фокальный параметр параболы равен длине перпендикуляра к ее оси симметрии, восстановленного в фокусе параболы до пересечения с параболой.

Доказательство. Так как точка
является точкой пересечения параболы
с перпендикуляром
(см. рис.3), то ее координаты удовлетворяют уравнению параболы:

.

Отсюда находим
, откуда и следует утверждение теоремы.

Теорема доказана.

п.6. Единое определение эллипса, гиперболы и параболы.

Используя доказанные свойства эллипса и гиперболы, и определение параболы можно дать единое для всех трех кривых определение.

Определение. ГМТ плоскости, для которых отношение расстояния до одной фиксированной точки плоскости, называемой фокусом, к расстоянию до одной фиксированной прямой, называемой директрисой, есть величина постоянная, называется:

а) эллипсом, если эта постоянная величина меньше 1;

б) гиперболой, если эта постоянная величина больше 1;

в) параболой, если эта постоянная величина равна 1.

Эта постоянная величина, о которой идет речь в определении, называется эксцентриситетом и обозначается , расстояние от данной точки до фокуса есть ее фокальный радиусr, расстояние от данной точки до директрисы обозначается черезd.

Из определения следует, что те точки плоскости, для которых отношение есть величина постоянная образуют эллипс, гиперболу или параболу, взависимости от величины этого отношения.

Если
, то мы получаем эллипс, если
, то мы получаем гиперболу, если
, то мы получаем параболу.

п.7. Касательная к параболе.

Теорема. Пусть
– произвольная точка параболы

.

Тогда уравнение касательной к этой параболе

в точке
имеет вид:

. (2)

Доказательство. Достаточно рассмотреть случай, когда точка касания лежит в первой четверти. Тогда уравнение параболы имеет вид:

и ее можно рассматривать как график функции
.

Воспользуемся уравнением касательной к графику функции
в точке
:

где
– значение производной данной функции в точке
.

Найдем производную функции
и ее значение в точке касания:

,
.

Здесь мы воспользовались тем, что точка касания
является точкой параболы и поэтому ее координаты удовлетворяют уравнению параболы, т.е.

.

Подставляем найденное значение производной в уравнение касательной:

,

откуда получаем:

.

Так как точка
принадлежит параболе, то ее координаты удовлетворяют ее уравнению, т.е.
, откуда получаем

или
.

Отсюда следует

.

Теорема доказана.

п.8. Зеркальное свойство параболы.

Теорема. Касательная к параболе образует равные углы с ее осью симметрии и с фокальным радиусом точки касания.

Доказательство. Пусть
– точка касания,– ее фокальный радиус. Обозначим черезNточку пересечения касательной с осью абсцисс. Ордината точкиNравна нулю и точкаNлежит на касательной, следовательно, ее координаты удовлетворяют уравнению касательной. Подставляя координаты точкиNв уравнение касательной, получаем:

,

откуда абсцисса точки Nравна
.

Рассмотрим треугольник
. Докажем, что он равнобедренный.

Действительно,
. Здесь мы воспользовались равенством, полученным при выводе канонического уравнения параболы:

.

В равнобедренном треугольнике углы при основании равны. Отсюда

, ч.т.д.

Теорема доказана.

Замечание. Доказанную теорему можно сформулировать в виде зеркального свойства параболы.

Луч света, выпущенный из фокуса параболы, после отражения от зеркала параболы, идет параллельно оси симметрии параболы.

Действительно, так как угол падения луча на касательную равен углу отражения от нее, то угол между касательной и отраженным лучом равен углу между касательной и осью абсцисс, откуда следует, что отраженный луч параллелен оси абсцисс.

Замечание. Это свойство параболы получило широкое применение в технике. Если параболу вращать вокруг ее оси симметрии, то получим поверхность, которая называется параболоидом вращения. Если выполнить отражающую поверхность в форме параболоида вращения и в фокусе поместить источник света, то отраженные лучи идут параллельно оси симметрии параболоида. Так устроены прожектора и автомобильные фары. Если же в фокусе поместить устройство принимающее электромагнитные колебания (волны), то они отражаясь от поверхности параболоида попадают в это принимающее устройство. По такому принципу работают спутниковые тарелки.

Существует легенда, что в древности один полководец выстроил своих воинов вдоль берега, придав их строю форму параболы. Солнечный свет, отражаясь от начищенных до блеска щитов воинов собирался в пучок (в фокусе построенной параболы). Таким образом были сожжены корабли неприятеля. Некоторые источники приписывают это Архимеду. Так или иначе, но арабы называли параболоид вращения "зажигательным зеркалом".

Кстати, слово "focus" латинское и в переводе означает огонь, очаг. С помощью "зажигательного зеркала" можно в солнечный день разжечь костер и вскипятить воду. Так что становится понятным происхождение этого термина.

Слово "фокус" означает также некоторый трюк или хитрый прием. Раньше цирк назывался балаганом. Так еще балаганные артисты использовали зеркальное свойство эллипса и зажигая свет в одном фокусе эллипса они разжигали что-нибудь лекговоспламеняющее, помещенное в другом его фокусе. Это зрелище также стали называть фокусом. (Читайте замечательную книжку Виленкина Н.Я. "За страницами учебника математики")

п.9. Полярное уравнение эллипса, гиперболы и параболы.

Пусть на плоскости дана точка F, которую мы назовем фокусом и прямаяD, которую мы назовем директрисой. Проведем через фокус прямую перпендикулярную директрисе (фокальная ось) и введем полярную систему координат. Полюс поместим в фокус, а в качестве полярного луча возьмем ту часть прямой, которая не пересекает директрису (см. рис.5).

Пусть точка М лежит на эллипсе, гиперболе или параболе. В дальнейшем будем называть зллипс гиперболу или параболу просто кривой.

Теорема. Пусть
– полярные координаты точки кривой (эллипса, гиперболы или параболы). Тогда

, (3)

где р – фокальный параметр кривой, – эксцентриситет кривой (для параболы полагаем
).

Доказательство. Пусть Q– проекция точки М на фокальную ось кривой, В – на директрису кривой. Пусть полярный уголточки М является тупым, как на рисунке 5. Тогда

,

где по построению,
– расстояние от точки М до директрисы,и

. (4)

С другой стороны, по единому определению эллипса, гиперболы и параболы отношение

(5)

равно эксцентриситету соответствующей кривой для любой точки М на данной кривой. Пусть точка
– точка пересечения кривой с перпендикуляром к фокальной оси, воостановленного в фокусеFи А – ее проекция на директрису. Тогда

, откуда
. Но
, откуда

и, подставляя в равенство (4), получаем

или, учитывая равенство (5),

откуда и следует доказываемое равенство (3).

Заметим, что равенство (4) остается верным и в случае, когда полярный угол точки М является острым, т.к. в этом случае точкаQнаходится правее фокусаFи

Теорема доказана.

Определение. Уравнение (3) называется полярным уравнением эллипса, гиперболы и параболы.

Парабола есть множество точек плоскости, равноудаленных от данной точки (фокуса ) и от данной прямой, не проходящей через данную точку (директрисы ), расположенных в той же плоскости (рис.5).

При этом система координат выбрана так, что ось
проходит перпендикулярно директрисе через фокус, положительное ее направление выбрано от директрисы в сторону фокуса. Ось ординат проходит параллельно директрисе, посередине между директрисой и фокусом, откуда уравнение директрисы
, координаты фокуса
. Начало координат является вершиной параболы, а ось абсцисс – ее осью симметрии. Эксцентриситет параболы
.

В ряде случаев рассматриваются параболы, заданные уравнениями

а)

б)
(для всех случаев
)

в)
.

В случае а) парабола симметрична относительно оси
и направлена в ее отрицательную сторону (рис.6).

В случаях б) и в) осью симметрии является ось
(рис.6). Координаты фокусов для этих случаев:

а)
б)
в)
.

Уравнение директрис:

а)
б)
в)
.

Пример 4. Парабола с вершиной в начале координат проходит через точку
и симметрична относительно оси
. Написать ее уравнение.

Решение:

Так как парабола симметрична относительно оси
и проходит через точкус положительной абсциссой, то она имеет вид, представленный на рис.5.

Подставляя координаты точки в уравнение такой параболы
, получим
, т.е.
.

Следовательно, искомое уравнение

,

фокус этой параболы
, уравнение директрисы
.

4. Преобразование уравнения линии второго порядка к каноническому виду.

Общее уравнение второй степени имеет вид

где коэффициенты
одновременно в нуль не обращаются.

Всякая определяемая уравнением (6) линия называется линией второго порядка. С помощью преобразования системы координат уравнение линии второго порядка может быть приведено к простейшему (каноническому) виду.

1. В уравнении (6)
. В данном случае уравнение (6) имеет вид

Оно преобразуется к простейшему виду с помощью параллельного переноса осей координат по формулам

(8)

где
– координаты нового начала
(в старой системе координат). Новые оси
и
параллельны старым. Точка
является центром эллипса или гиперболы и вершиной в случае параболы.

Приведение уравнения (7) к простейшему виду удобно делать методом выделения полных квадратов аналогично тому, как это делалось для окружности.

Пример 5. Уравнение линии второго порядка привести к простейшему виду. Определить вид и расположение этой линии. Найти координаты фокусов. Сделать чертеж.

Решение:

Группируем члены, содержащие только и только, вынося коэффициенты прииза скобку:

Дополняем выражения в скобках до полных квадратов:

Таким образом, данное уравнение преобразовано к виду

Обозначаем

или

Сравнивая с уравнениями (8), видим, что эти формулы определяют параллельный перенос осей координат в точку
. В новой системе координат уравнение запишется так:

Перенося свободный член вправо и разделив на него, получим:

.

Итак, данная линия второго порядка есть эллипс с полуосями
,
. Центр эллипса находится в новом начале координат
, а его фокальная ось есть ось
. Расстояние фокусов от центра, так что новые координаты правого фокуса
. Старые координаты этого же фокуса находятся из формул параллельного переноса:

Аналогично, новые координаты левого фокуса
,
. Его старые координаты:
,
.

Чтобы начертить данный эллипс, наносим на чертеж старые и новые координатные оси. По обе стороны от точки
откладываем по оси
отрезки длины
, а по оси
– длины
; получив таким образом вершины эллипса, чертим сам эллипс (рис. 7).

Замечание . Для уточнения чертежа полезно найти точки пересечения данной линии (7) со старыми координатными осями. Для этого надо в формуле (7) положить сначала
, а затем
и решить получающиеся уравнения.

Появления комплексных корней будет означать, что линия (7) соответствующую координатную ось не пересекает.

Например, для эллипса только что разобранной задачи получаются такие уравнения:

Второе из этих уравнений имеет комплексные корни, так что эллипс ось
не пересекает. Корни первого уравнения:

В точках
и
эллипс пересекает ось
(рис.7).

Пример 6. Привести к простейшему виду уравнение линии второго порядка . Определить вид и расположении линии, найти координаты фокуса.

Решение:

Так как член с отсутствует, то надо выделить полный квадрат только по:

Выносим также за скобку коэффициент при

.

Обозначаем

или

Тем самым производится параллельный перенос системы координат в точку
. После переноса уравнение примет вид

.

Отсюда следует, что данная линия есть парабола (рис.8), точка
является ее вершиной. Парабола направлена в отрицательную сторону оси
и симметрична относительно этой оси. Величинадля нее равна.

Поэтому фокус имеет новые координаты

.

Его старые координаты

Если в данном уравнении положить
или
, то обнаружим, что парабола пересекает ось
в точке
, а ось
она не пересекает.

2. В уравнении (1)
. Общее уравнение (1) второй степени преобразуется к виду (2), т.е. к рассмотренному в п.1. случаю, с помощь поворота координатных осей на угол
по формулам

(9)

где
– новые координаты. Угол
находится из уравнения

Оси координат поворачиваются при этом так, чтобы новые оси
и
были параллельны осям симметрии линии второго порядка.

Зная
, можно найти
и
по формулам тригонометрии

,
.

Если угол поворота
условиться считать острым, то в этих формулах надо брать знак плюс, и для
надо взять также положительное решение уравнения (5).

В частности, при
систему координат нужно повернуть на угол
. Формулы поворота на уголимеют вид:

(11)

Пример 7. Уравнение линии второго порядка привести к простейшему виду. Установить вид и расположение этой линии.

Решение:

В данном случае
, 1
,
, поэтому угол поворота
находится из уравнения

.

Решение этого уравнения
и
. Ограничиваясь острым углом
, берем первое из них. Тогда

,

,
.

Подставляя эти значения ив данное уравнение

Раскрывая скобки и приводя подобные, получим

.

Наконец, разделив на свободный член, придем к уравнению эллипса

.

Отсюда следует, что
,
, причем большая ось эллипса направлена по оси
, а малая – по оси
.

Получится точка
, радиус которой
наклонен к оси
под углом
, для которого
. Следовательно, через эту точку
и пройдет новая ось абсцисс. Затем отмечаем на осях
и
вершины эллипса и чертим эллипс (рис.9).

Заметим, что данный эллипс пересекает старые координатные оси в точках, которые находятся из квадратных уравнений (если в данном уравнении положить
или
):

и
.